File size: 16,893 Bytes
8018595
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7638cbd
8018595
 
 
 
 
 
 
 
 
 
 
 
7638cbd
 
 
 
 
 
8018595
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94a0f4c
8018595
 
7638cbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
"""Tests for the Gail Breast Cancer Risk Model.

Ground truth values collected from: https://bcrisktool.cancer.gov/
"""

import pytest

from sentinel.risk_models import GailRiskModel
from sentinel.user_input import (
    Anthropometrics,
    BreastHealthHistory,
    CancerType,
    Demographics,
    Ethnicity,
    FamilyMemberCancer,
    FamilyRelation,
    FamilySide,
    FemaleSpecific,
    Lifestyle,
    MenstrualHistory,
    ParityHistory,
    PersonalMedicalHistory,
    RelationshipDegree,
    Sex,
    SmokingHistory,
    SmokingStatus,
    UserInput,
)

# Test cases with ground truth data from NCI BCRAT calculator
GROUND_TRUTH_CASES = [
    {
        "name": "low_risk",
        "input": UserInput(
            demographics=Demographics(
                age_years=40,
                sex=Sex.FEMALE,
                ethnicity=Ethnicity.WHITE,
                anthropometrics=Anthropometrics(height_cm=165.0, weight_kg=65.0),
            ),
            lifestyle=Lifestyle(
                smoking=SmokingHistory(status=SmokingStatus.NEVER),
            ),
            personal_medical_history=PersonalMedicalHistory(),
            female_specific=FemaleSpecific(
                menstrual=MenstrualHistory(age_at_menarche=13),
                parity=ParityHistory(
                    num_live_births=1,
                    age_at_first_live_birth=25,
                ),
                breast_health=BreastHealthHistory(),
            ),
            family_history=[],
        ),
        "expected": 0.6,
    },
    {
        "name": "average_risk",
        "input": UserInput(
            demographics=Demographics(
                age_years=50,
                sex=Sex.FEMALE,
                ethnicity=Ethnicity.WHITE,
                anthropometrics=Anthropometrics(height_cm=165.0, weight_kg=65.0),
            ),
            lifestyle=Lifestyle(
                smoking=SmokingHistory(status=SmokingStatus.NEVER),
            ),
            personal_medical_history=PersonalMedicalHistory(),
            female_specific=FemaleSpecific(
                menstrual=MenstrualHistory(age_at_menarche=12),
                parity=ParityHistory(
                    num_live_births=1,
                    age_at_first_live_birth=28,
                ),
                breast_health=BreastHealthHistory(),
            ),
            family_history=[
                FamilyMemberCancer(
                    relation=FamilyRelation.MOTHER,
                    cancer_type=CancerType.BREAST,
                    age_at_diagnosis=55,
                    degree=RelationshipDegree.FIRST,
                    side=FamilySide.MATERNAL,
                )
            ],
        ),
        "expected": 2.2,
    },
    {
        "name": "high_risk",
        "input": UserInput(
            demographics=Demographics(
                age_years=55,
                sex=Sex.FEMALE,
                ethnicity=Ethnicity.WHITE,
                anthropometrics=Anthropometrics(height_cm=165.0, weight_kg=65.0),
            ),
            lifestyle=Lifestyle(
                smoking=SmokingHistory(status=SmokingStatus.NEVER),
            ),
            personal_medical_history=PersonalMedicalHistory(),
            female_specific=FemaleSpecific(
                menstrual=MenstrualHistory(age_at_menarche=11),
                parity=ParityHistory(
                    num_live_births=1,
                    age_at_first_live_birth=35,
                ),
                breast_health=BreastHealthHistory(
                    num_biopsies=2,
                    atypical_hyperplasia=True,
                ),
            ),
            family_history=[
                FamilyMemberCancer(
                    relation=FamilyRelation.MOTHER,
                    cancer_type=CancerType.BREAST,
                    age_at_diagnosis=45,
                    degree=RelationshipDegree.FIRST,
                    side=FamilySide.MATERNAL,
                ),
                FamilyMemberCancer(
                    relation=FamilyRelation.SISTER,
                    cancer_type=CancerType.BREAST,
                    age_at_diagnosis=50,
                    degree=RelationshipDegree.FIRST,
                    side=FamilySide.MATERNAL,
                ),
            ],
        ),
        "expected": 10.9,
    },
    {
        "name": "african_american",
        "input": UserInput(
            demographics=Demographics(
                age_years=45,
                sex=Sex.FEMALE,
                ethnicity=Ethnicity.BLACK,
                anthropometrics=Anthropometrics(height_cm=165.0, weight_kg=65.0),
            ),
            lifestyle=Lifestyle(
                smoking=SmokingHistory(status=SmokingStatus.NEVER),
            ),
            personal_medical_history=PersonalMedicalHistory(),
            female_specific=FemaleSpecific(
                menstrual=MenstrualHistory(age_at_menarche=12),
                parity=ParityHistory(
                    num_live_births=1,
                    age_at_first_live_birth=22,
                ),
                breast_health=BreastHealthHistory(),
            ),
            family_history=[
                FamilyMemberCancer(
                    relation=FamilyRelation.MOTHER,
                    cancer_type=CancerType.BREAST,
                    age_at_diagnosis=55,
                    degree=RelationshipDegree.FIRST,
                    side=FamilySide.MATERNAL,
                )
            ],
        ),
        "expected": 1.6,
    },
    {
        "name": "hispanic_nulliparous",
        "input": UserInput(
            demographics=Demographics(
                age_years=42,
                sex=Sex.FEMALE,
                ethnicity=Ethnicity.HISPANIC,
                anthropometrics=Anthropometrics(height_cm=165.0, weight_kg=65.0),
            ),
            lifestyle=Lifestyle(
                smoking=SmokingHistory(status=SmokingStatus.NEVER),
            ),
            personal_medical_history=PersonalMedicalHistory(),
            female_specific=FemaleSpecific(
                menstrual=MenstrualHistory(age_at_menarche=14),
                parity=ParityHistory(
                    num_live_births=0,
                    age_at_first_live_birth=None,
                ),
                breast_health=BreastHealthHistory(),
            ),
            family_history=[],
        ),
        "expected": 0.9,
    },
]


class TestGailModel:
    """Test suite for GailRiskModel."""

    def setup_method(self):
        """Initialize GailRiskModel instance for testing."""
        self.model = GailRiskModel()

    @pytest.mark.parametrize("case", GROUND_TRUTH_CASES, ids=lambda x: x["name"])
    def test_ground_truth_validation(self, case):
        """Test against NCI BCRAT ground truth results.

        Args:
            case: Parameterized ground truth case dict.
        """
        user = case["input"]
        fs = user.female_specific
        age = user.demographics.age_years
        projection_age = min(age + 5, 90)
        num_biopsies = fs.breast_health.num_biopsies or 0
        hyperplasia = 1 if (fs.breast_health.atypical_hyperplasia or False) else 0
        age_menarche = fs.menstrual.age_at_menarche or 99
        if (fs.parity.num_live_births or 0) > 0:
            age_first_birth = fs.parity.age_at_first_live_birth or 98
        else:
            age_first_birth = 98
        num_relatives = sum(
            1
            for fh in user.family_history
            if fh.cancer_type == CancerType.BREAST
            and fh.relation
            in {FamilyRelation.MOTHER, FamilyRelation.SISTER, FamilyRelation.DAUGHTER}
        )
        race = 1
        if user.demographics.ethnicity:
            if user.demographics.ethnicity == Ethnicity.BLACK:
                race = 2
            elif user.demographics.ethnicity in {
                Ethnicity.ASIAN,
                Ethnicity.PACIFIC_ISLANDER,
            }:
                race = 3
            elif user.demographics.ethnicity == Ethnicity.HISPANIC:
                race = 6

        calculated = self.model.absolute_risk(
            age=age,
            projection_age=projection_age,
            num_biopsies=num_biopsies,
            hyperplasia=hyperplasia,
            age_menarche=age_menarche,
            age_first_birth=age_first_birth,
            num_relatives=num_relatives,
            race=race,
        )
        expected = case["expected"]

        assert calculated == pytest.approx(expected, abs=0.5)

    def test_user_input_integration(self):
        """Test integration with UserInput model."""
        user = UserInput(
            demographics=Demographics(
                age_years=45,
                sex=Sex.FEMALE,
                ethnicity=Ethnicity.WHITE,
                anthropometrics=Anthropometrics(height_cm=165.0, weight_kg=65.0),
            ),
            lifestyle=Lifestyle(
                smoking=SmokingHistory(status=SmokingStatus.NEVER),
            ),
            personal_medical_history=PersonalMedicalHistory(),
            female_specific=FemaleSpecific(
                menstrual=MenstrualHistory(age_at_menarche=12),
                parity=ParityHistory(
                    num_live_births=2,
                    age_at_first_live_birth=25,
                ),
                breast_health=BreastHealthHistory(),
            ),
            family_history=[
                FamilyMemberCancer(
                    relation=FamilyRelation.MOTHER,
                    cancer_type=CancerType.BREAST,
                    age_at_diagnosis=55,
                    degree=RelationshipDegree.FIRST,
                    side=FamilySide.MATERNAL,
                )
            ],
        )

        score = self.model.compute_score(user)
        assert score != "N/A: Missing female-specific information."
        assert float(score) > 0

    def test_male_patient_handling(self):
        """Test that male patients raise ValueError due to validation failure."""
        male_user = UserInput(
            demographics=Demographics(
                age_years=45,
                sex=Sex.MALE,
                anthropometrics=Anthropometrics(height_cm=175.0, weight_kg=75.0),
            ),
            lifestyle=Lifestyle(
                smoking=SmokingHistory(status=SmokingStatus.NEVER),
            ),
            personal_medical_history=PersonalMedicalHistory(),
        )

        # Male patients should now raise ValueError due to validation failure
        with pytest.raises(ValueError) as exc_info:
            self.model.compute_score(male_user)

        assert "Invalid inputs for Gail" in str(exc_info.value)
        assert "must be FEMALE" in str(exc_info.value)

    def test_age_validation(self):
        """Test age validation (35-85 range)."""
        young_user = UserInput(
            demographics=Demographics(
                age_years=34,
                sex=Sex.FEMALE,
                anthropometrics=Anthropometrics(height_cm=165.0, weight_kg=65.0),
            ),
            lifestyle=Lifestyle(
                smoking=SmokingHistory(status=SmokingStatus.NEVER),
            ),
            personal_medical_history=PersonalMedicalHistory(),
            female_specific=FemaleSpecific(
                menstrual=MenstrualHistory(age_at_menarche=13),
                parity=ParityHistory(
                    num_live_births=1,
                    age_at_first_live_birth=25,
                ),
                breast_health=BreastHealthHistory(),
            ),
        )
        with pytest.raises(
            ValueError,
            match=r"Invalid inputs for Gail.*age_years.*greater than or equal to 35",
        ):
            self.model.compute_score(young_user)

        old_user = UserInput(
            demographics=Demographics(
                age_years=86,
                sex=Sex.FEMALE,
                anthropometrics=Anthropometrics(height_cm=165.0, weight_kg=65.0),
            ),
            lifestyle=Lifestyle(
                smoking=SmokingHistory(status=SmokingStatus.NEVER),
            ),
            personal_medical_history=PersonalMedicalHistory(),
            female_specific=FemaleSpecific(
                menstrual=MenstrualHistory(age_at_menarche=13),
                parity=ParityHistory(
                    num_live_births=1,
                    age_at_first_live_birth=25,
                ),
                breast_health=BreastHealthHistory(),
            ),
        )
        with pytest.raises(
            ValueError,
            match=r"Invalid inputs for Gail.*age_years.*less than or equal to 85",
        ):
            self.model.compute_score(old_user)

    def test_model_metadata(self):
        """Test model metadata methods."""
        assert self.model.name == "gail"
        assert self.model.cancer_type() == "breast"
        assert (
            "Gail Model" in self.model.description()
            or "BCRAT" in self.model.description()
        )
        assert "1.67" in self.model.interpretation()
        assert isinstance(self.model.references(), list)
        assert len(self.model.references()) > 0

    def test_male_patient_validation_rejection(self):
        """Test that male patients are rejected during validation."""
        male_user = UserInput(
            demographics=Demographics(
                age_years=40,
                sex=Sex.MALE,  # Male patient should be rejected
                ethnicity=Ethnicity.WHITE,
                anthropometrics=Anthropometrics(height_cm=175.0, weight_kg=75.0),
            ),
            lifestyle=Lifestyle(
                smoking=SmokingHistory(status=SmokingStatus.NEVER),
            ),
            personal_medical_history=PersonalMedicalHistory(),
        )

        # Validation should fail before compute_score is called
        is_valid, errors = self.model.validate_inputs(male_user)
        assert not is_valid
        assert len(errors) == 1
        assert "Field 'demographics.sex': must be FEMALE" in errors[0]

    def test_male_patient_compute_score_raises_error(self):
        """Test that compute_score raises ValueError for male patients."""
        male_user = UserInput(
            demographics=Demographics(
                age_years=40,
                sex=Sex.MALE,
                ethnicity=Ethnicity.WHITE,
                anthropometrics=Anthropometrics(height_cm=175.0, weight_kg=75.0),
            ),
            lifestyle=Lifestyle(
                smoking=SmokingHistory(status=SmokingStatus.NEVER),
            ),
            personal_medical_history=PersonalMedicalHistory(),
        )

        # compute_score should raise ValueError due to validation failure
        with pytest.raises(ValueError) as exc_info:
            self.model.compute_score(male_user)

        assert "Invalid inputs for Gail" in str(exc_info.value)
        assert "must be FEMALE" in str(exc_info.value)

    def test_ethnicity_restriction_validation(self):
        """Test that unsupported ethnicities are rejected during validation."""
        # Test with unsupported ethnicity
        user = UserInput(
            demographics=Demographics(
                age_years=40,
                sex=Sex.FEMALE,
                ethnicity=Ethnicity.ASHKENAZI_JEWISH,  # Not in supported list
                anthropometrics=Anthropometrics(height_cm=165.0, weight_kg=65.0),
            ),
            lifestyle=Lifestyle(
                smoking=SmokingHistory(status=SmokingStatus.NEVER),
            ),
            personal_medical_history=PersonalMedicalHistory(),
        )

        # Validation should fail
        is_valid, errors = self.model.validate_inputs(user)
        assert not is_valid
        assert len(errors) == 1
        assert "Field 'demographics.ethnicity': Input should be" in errors[0]
        assert "WHITE" in errors[0] and "BLACK" in errors[0] and "ASIAN" in errors[0]

    def test_supported_ethnicities_pass_validation(self):
        """Test that all supported ethnicities pass validation."""
        supported_ethnicities = [
            Ethnicity.WHITE,
            Ethnicity.BLACK,
            Ethnicity.ASIAN,
            Ethnicity.PACIFIC_ISLANDER,
            Ethnicity.HISPANIC,
        ]

        for ethnicity in supported_ethnicities:
            user = UserInput(
                demographics=Demographics(
                    age_years=40,
                    sex=Sex.FEMALE,
                    ethnicity=ethnicity,
                    anthropometrics=Anthropometrics(height_cm=165.0, weight_kg=65.0),
                ),
                lifestyle=Lifestyle(
                    smoking=SmokingHistory(status=SmokingStatus.NEVER),
                ),
                personal_medical_history=PersonalMedicalHistory(),
            )

            is_valid, errors = self.model.validate_inputs(user)
            assert is_valid, f"Failed for ethnicity: {ethnicity}"
            assert len(errors) == 0