File size: 10,478 Bytes
8018595
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
"""Tests for the QCancer multi-site cancer risk model."""

import csv
from pathlib import Path

import pytest

from sentinel.risk_models import QCancerRiskModel
from sentinel.risk_models.qcancer import (
    compute_female_probabilities,
    compute_male_probabilities,
)
from sentinel.user_input import (
    AlcoholConsumption,
    Anthropometrics,
    Demographics,
    Lifestyle,
    PersonalMedicalHistory,
    Sex,
    SmokingHistory,
    SmokingStatus,
    UserInput,
)

FIXTURE_PATH = Path("tests/fixtures/qcancer_reference.tsv")
FEMALE_INPUT_PATH = Path("tests/fixtures/qcancer_inputs_female.tsv")
MALE_INPUT_PATH = Path("tests/fixtures/qcancer_inputs_male.tsv")


def _load_reference_cases() -> list[dict[str, str]]:
    with FIXTURE_PATH.open("r", encoding="utf-8") as handle:
        return list(csv.DictReader(handle, delimiter="\t"))


def _parse_probability_columns(row: dict[str, str]) -> dict[str, float]:
    result = {}
    for key in row:
        if key in {"case_id", "sex"}:
            continue
        # Keep keys as-is (including "none" from C binary output)
        result[key] = float(row[key])
    return result


REFERENCE_CASES = _load_reference_cases()


class TestQCancerModel:
    """Test suite for QCancer risk model."""

    def setup_method(self) -> None:
        """Set up test fixtures."""
        self.model = QCancerRiskModel()

    @pytest.mark.parametrize("case", REFERENCE_CASES, ids=lambda c: c["case_id"])
    def test_reference_regression(self, case: dict[str, str]) -> None:
        """Test exact implementation against C binary output using TSV inputs.

        Args:
            case: Test case dictionary containing case_id, sex, and expected probabilities.
        """
        expected = _parse_probability_columns(case)
        case_id = case["case_id"]
        sex = case["sex"]

        # Load the corresponding TSV input
        if sex == "female":
            with FEMALE_INPUT_PATH.open("r", encoding="utf-8") as f:
                reader = csv.DictReader(f, delimiter="\t")
                inputs = {row["case_id"]: row for row in reader}

            if case_id not in inputs:
                pytest.skip(f"No input TSV for {case_id}")

            inp = inputs[case_id]
            # Call exact function with TSV parameters
            result = compute_female_probabilities(
                age=int(inp["age"]),
                alcohol_cat4=int(inp["alcohol_cat4"]),
                b_chronicpan=int(inp["b_chronicpan"]),
                b_copd=int(inp["b_copd"]),
                b_endometrial=int(inp["b_endometrial"]),
                b_type2=int(inp["b_type2"]),
                bmi=float(inp["bmi"]),
                c_hb=int(inp["c_hb"]),
                fh_breastcancer=int(inp["fh_breastcancer"]),
                fh_gicancer=int(inp["fh_gicancer"]),
                fh_ovariancancer=int(inp["fh_ovariancancer"]),
                new_abdodist=int(inp["new_abdodist"]),
                new_abdopain=int(inp["new_abdopain"]),
                new_appetiteloss=int(inp["new_appetiteloss"]),
                new_breastlump=int(inp["new_breastlump"]),
                new_breastpain=int(inp["new_breastpain"]),
                new_breastskin=int(inp["new_breastskin"]),
                new_dysphagia=int(inp["new_dysphagia"]),
                new_gibleed=int(inp["new_gibleed"]),
                new_haematuria=int(inp["new_haematuria"]),
                new_haemoptysis=int(inp["new_haemoptysis"]),
                new_heartburn=int(inp["new_heartburn"]),
                new_imb=int(inp["new_imb"]),
                new_indigestion=int(inp["new_indigestion"]),
                new_necklump=int(inp["new_necklump"]),
                new_nightsweats=int(inp["new_nightsweats"]),
                new_pmb=int(inp["new_pmb"]),
                new_postcoital=int(inp["new_postcoital"]),
                new_rectalbleed=int(inp["new_rectalbleed"]),
                new_vte=int(inp["new_vte"]),
                new_weightloss=int(inp["new_weightloss"]),
                s1_bowelchange=int(inp["s1_bowelchange"]),
                s1_bruising=int(inp["s1_bruising"]),
                s1_constipation=int(inp["s1_constipation"]),
                s1_cough=int(inp["s1_cough"]),
                smoke_cat=int(inp["smoke_cat"]),
                town=float(inp["town"]),
            )
        else:  # male
            with MALE_INPUT_PATH.open("r", encoding="utf-8") as f:
                reader = csv.DictReader(f, delimiter="\t")
                inputs = {row["case_id"]: row for row in reader}

            if case_id not in inputs:
                pytest.skip(f"No input TSV for {case_id}")

            inp = inputs[case_id]
            # Call exact function with TSV parameters
            result = compute_male_probabilities(
                age=int(inp["age"]),
                alcohol_cat4=int(inp["alcohol_cat4"]),
                b_chronicpan=int(inp["b_chronicpan"]),
                b_copd=int(inp["b_copd"]),
                b_type2=int(inp["b_type2"]),
                bmi=float(inp["bmi"]),
                c_hb=int(inp["c_hb"]),
                fh_gicancer=int(inp["fh_gicancer"]),
                fh_prostatecancer=int(inp["fh_prostatecancer"]),
                new_abdodist=int(inp["new_abdodist"]),
                new_abdopain=int(inp["new_abdopain"]),
                new_appetiteloss=int(inp["new_appetiteloss"]),
                new_dysphagia=int(inp["new_dysphagia"]),
                new_gibleed=int(inp["new_gibleed"]),
                new_haematuria=int(inp["new_haematuria"]),
                new_haemoptysis=int(inp["new_haemoptysis"]),
                new_heartburn=int(inp["new_heartburn"]),
                new_indigestion=int(inp["new_indigestion"]),
                new_necklump=int(inp["new_necklump"]),
                new_nightsweats=int(inp["new_nightsweats"]),
                new_rectalbleed=int(inp["new_rectalbleed"]),
                new_testespain=int(inp["new_testespain"]),
                new_testicularlump=int(inp["new_testicularlump"]),
                new_vte=int(inp["new_vte"]),
                new_weightloss=int(inp["new_weightloss"]),
                s1_bowelchange=int(inp["s1_bowelchange"]),
                s1_constipation=int(inp["s1_constipation"]),
                s1_cough=int(inp["s1_cough"]),
                s1_impotence=int(inp["s1_impotence"]),
                s1_nocturia=int(inp["s1_nocturia"]),
                s1_urinaryfreq=int(inp["s1_urinaryfreq"]),
                s1_urinaryretention=int(inp["s1_urinaryretention"]),
                smoke_cat=int(inp["smoke_cat"]),
                town=float(inp["town"]),
            )

        # Compare results
        for cancer_site, expected_pct in expected.items():
            observed = result.get(cancer_site, 0.0)
            assert observed == pytest.approx(expected_pct, abs=0.01)

    def test_metadata(self) -> None:
        """Test that model returns correct metadata."""
        assert self.model.name == "qcancer"
        assert self.model.cancer_type() == "multiple"
        assert "QCancer" in self.model.description()

    def test_compute_score_with_user_input(self) -> None:
        """Test that QCancerRiskModel.compute_score works with UserInput."""
        user = UserInput(
            demographics=Demographics(
                age_years=55,
                sex=Sex.FEMALE,
                anthropometrics=Anthropometrics(height_cm=165, weight_kg=70.0),
            ),
            lifestyle=Lifestyle(
                smoking=SmokingHistory(status=SmokingStatus.NEVER),
                alcohol_consumption=AlcoholConsumption.LIGHT,
            ),
            personal_medical_history=PersonalMedicalHistory(),
            family_history=[],
        )
        result = self.model.compute_score(user)
        assert "No Cancer:" in result
        assert "%" in result

    def test_qcancer_with_anaemia_and_endometrial_polyps(self) -> None:
        """Test QCancer processes anaemia and endometrial polyps correctly."""
        from sentinel.user_input import ChronicCondition

        user = UserInput(
            demographics=Demographics(
                age_years=55,
                sex=Sex.FEMALE,
                anthropometrics=Anthropometrics(height_cm=165, weight_kg=70.0),
            ),
            lifestyle=Lifestyle(
                smoking=SmokingHistory(status=SmokingStatus.NEVER),
                alcohol_consumption=AlcoholConsumption.LIGHT,
            ),
            personal_medical_history=PersonalMedicalHistory(
                chronic_conditions=[
                    ChronicCondition.ANAEMIA,
                    ChronicCondition.ENDOMETRIAL_POLYPS,
                ]
            ),
            family_history=[],
        )

        # Should not raise an error and should include these conditions in calculation
        result = self.model.compute_score(user)
        assert "No Cancer:" in result
        assert "%" in result
        # Should have multiple cancer types listed
        assert result.count("%") >= 10

    def test_validate_inputs_valid_user(self) -> None:
        """Test that valid user input passes validation."""
        user = UserInput(
            demographics=Demographics(
                age_years=55,
                sex=Sex.FEMALE,
                anthropometrics=Anthropometrics(height_cm=165, weight_kg=70.0),
            ),
            lifestyle=Lifestyle(
                smoking=SmokingHistory(status=SmokingStatus.NEVER),
            ),
            personal_medical_history=PersonalMedicalHistory(),
            family_history=[],
        )

        is_valid, errors = self.model.validate_inputs(user)
        assert is_valid
        assert len(errors) == 0

    def test_validate_inputs_age_out_of_range(self) -> None:
        """Test that age outside QCancer range is caught."""
        user = UserInput(
            demographics=Demographics(
                age_years=20,  # Too young for QCancer (requires 25-99)
                sex=Sex.FEMALE,
                anthropometrics=Anthropometrics(height_cm=165, weight_kg=70.0),
            ),
            lifestyle=Lifestyle(
                smoking=SmokingHistory(status=SmokingStatus.NEVER),
            ),
            personal_medical_history=PersonalMedicalHistory(),
            family_history=[],
        )

        is_valid, errors = self.model.validate_inputs(user)
        assert not is_valid
        assert any("age_years" in err and "25" in err for err in errors)