Spaces:
Runtime error
Runtime error
Sync from GitHub (main)
Browse files
src/sentinel/risk_models/__init__.py
CHANGED
|
@@ -9,6 +9,7 @@ from sentinel.risk_models.llpi import LLPiRiskModel
|
|
| 9 |
from sentinel.risk_models.mrat import MRATRiskModel
|
| 10 |
from sentinel.risk_models.pcpt import PCPTRiskModel
|
| 11 |
from sentinel.risk_models.plcom2012 import PLCOm2012RiskModel
|
|
|
|
| 12 |
from sentinel.risk_models.qcancer import QCancerRiskModel
|
| 13 |
|
| 14 |
RISK_MODELS = [
|
|
@@ -19,6 +20,7 @@ RISK_MODELS = [
|
|
| 19 |
CRCProRiskModel,
|
| 20 |
ExtendedPBCGRiskModel,
|
| 21 |
PCPTRiskModel,
|
|
|
|
| 22 |
QCancerRiskModel,
|
| 23 |
ClausRiskModel,
|
| 24 |
MRATRiskModel,
|
|
|
|
| 9 |
from sentinel.risk_models.mrat import MRATRiskModel
|
| 10 |
from sentinel.risk_models.pcpt import PCPTRiskModel
|
| 11 |
from sentinel.risk_models.plcom2012 import PLCOm2012RiskModel
|
| 12 |
+
from sentinel.risk_models.prostate_mortality import ProstateMortalityRiskModel
|
| 13 |
from sentinel.risk_models.qcancer import QCancerRiskModel
|
| 14 |
|
| 15 |
RISK_MODELS = [
|
|
|
|
| 20 |
CRCProRiskModel,
|
| 21 |
ExtendedPBCGRiskModel,
|
| 22 |
PCPTRiskModel,
|
| 23 |
+
ProstateMortalityRiskModel,
|
| 24 |
QCancerRiskModel,
|
| 25 |
ClausRiskModel,
|
| 26 |
MRATRiskModel,
|
src/sentinel/risk_models/prostate_mortality.py
ADDED
|
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Prostate cancer mortality prediction model.
|
| 2 |
+
|
| 3 |
+
This module implements a prostate cancer-specific mortality (PCSM) and
|
| 4 |
+
non-prostate cancer mortality (NPCM) prediction model for men diagnosed
|
| 5 |
+
with non-metastatic prostate cancer. The model uses competing risks
|
| 6 |
+
methodology to predict mortality outcomes at specified time horizons.
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
from math import exp, log
|
| 10 |
+
from typing import Annotated
|
| 11 |
+
|
| 12 |
+
from pydantic import Field
|
| 13 |
+
|
| 14 |
+
from sentinel.risk_models.base import RiskModel
|
| 15 |
+
from sentinel.user_input import (
|
| 16 |
+
ProstateBiopsyCoresInvolved,
|
| 17 |
+
ProstateCancerTreatment,
|
| 18 |
+
PSATest,
|
| 19 |
+
Sex,
|
| 20 |
+
UserInput,
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class ProstateMortalityRiskModel(RiskModel):
|
| 25 |
+
"""Predict prostate cancer-specific and non-prostate cancer mortality."""
|
| 26 |
+
|
| 27 |
+
def __init__(self) -> None:
|
| 28 |
+
super().__init__("prostate_mortality")
|
| 29 |
+
|
| 30 |
+
REQUIRED_INPUTS: dict[str, tuple[type, bool]] = {
|
| 31 |
+
"demographics.age_years": (Annotated[int, Field(ge=35, le=95)], True),
|
| 32 |
+
"demographics.sex": (Sex, True),
|
| 33 |
+
"clinical_tests.psa": (PSATest, True),
|
| 34 |
+
"personal_medical_history.prostate_cancer_grade_group": (
|
| 35 |
+
Annotated[int, Field(ge=1, le=5)],
|
| 36 |
+
True,
|
| 37 |
+
),
|
| 38 |
+
"personal_medical_history.prostate_cancer_t_stage": (
|
| 39 |
+
Annotated[int, Field(ge=1, le=4)],
|
| 40 |
+
True,
|
| 41 |
+
),
|
| 42 |
+
"personal_medical_history.charlson_comorbidity_score": (
|
| 43 |
+
Annotated[int, Field(ge=0, le=1)],
|
| 44 |
+
False,
|
| 45 |
+
),
|
| 46 |
+
"personal_medical_history.prostate_cancer_treatment": (
|
| 47 |
+
ProstateCancerTreatment,
|
| 48 |
+
False,
|
| 49 |
+
),
|
| 50 |
+
"personal_medical_history.prostate_biopsy_cores_involved": (
|
| 51 |
+
ProstateBiopsyCoresInvolved,
|
| 52 |
+
False,
|
| 53 |
+
),
|
| 54 |
+
}
|
| 55 |
+
|
| 56 |
+
def absolute_risk(self, user: UserInput, years: int = 15) -> dict[str, float]:
|
| 57 |
+
"""Compute prostate cancer-specific and non-prostate cancer mortality.
|
| 58 |
+
|
| 59 |
+
Args:
|
| 60 |
+
user: The user profile with clinical data.
|
| 61 |
+
years: Time horizon for predictions (default: 15 years).
|
| 62 |
+
|
| 63 |
+
Returns:
|
| 64 |
+
Dictionary with mortality percentages for PCSM, NPCM, and overall.
|
| 65 |
+
|
| 66 |
+
Raises:
|
| 67 |
+
ValueError: If PSA value is missing or out of range.
|
| 68 |
+
"""
|
| 69 |
+
if user.clinical_tests.psa is None:
|
| 70 |
+
raise ValueError("PSA test is required.")
|
| 71 |
+
|
| 72 |
+
age = float(user.demographics.age_years)
|
| 73 |
+
psa = user.clinical_tests.psa.value_ng_ml
|
| 74 |
+
|
| 75 |
+
if psa < 0 or psa > 100:
|
| 76 |
+
raise ValueError("PSA must be between 0 and 100 ng/mL.")
|
| 77 |
+
|
| 78 |
+
grade_group = user.personal_medical_history.prostate_cancer_grade_group
|
| 79 |
+
t_stage = user.personal_medical_history.prostate_cancer_t_stage
|
| 80 |
+
charlson = user.personal_medical_history.charlson_comorbidity_score or 0
|
| 81 |
+
|
| 82 |
+
treatment_map = {
|
| 83 |
+
ProstateCancerTreatment.CONSERVATIVE: 0,
|
| 84 |
+
ProstateCancerTreatment.RADICAL: 1,
|
| 85 |
+
ProstateCancerTreatment.ADT_ALONE: 3,
|
| 86 |
+
None: 0,
|
| 87 |
+
}
|
| 88 |
+
treatment = treatment_map[
|
| 89 |
+
user.personal_medical_history.prostate_cancer_treatment
|
| 90 |
+
]
|
| 91 |
+
|
| 92 |
+
biopsy_map = {
|
| 93 |
+
ProstateBiopsyCoresInvolved.UNKNOWN: 0,
|
| 94 |
+
ProstateBiopsyCoresInvolved.LESS_THAN_50_PERCENT: 1,
|
| 95 |
+
ProstateBiopsyCoresInvolved.FIFTY_PERCENT_OR_MORE: 2,
|
| 96 |
+
None: 0,
|
| 97 |
+
}
|
| 98 |
+
biopsy50 = biopsy_map[
|
| 99 |
+
user.personal_medical_history.prostate_biopsy_cores_involved
|
| 100 |
+
]
|
| 101 |
+
|
| 102 |
+
pi_pcsm = (
|
| 103 |
+
0.0026005 * ((age / 10) ** 3 - 341.155151)
|
| 104 |
+
+ 0.185959 * (log((psa + 1) / 100) + 1.636423432)
|
| 105 |
+
+ 0.1614922 * (1 if t_stage == 2 else 0)
|
| 106 |
+
+ 0.39767881 * (1 if t_stage == 3 else 0)
|
| 107 |
+
+ 0.6330977 * (1 if t_stage == 4 else 0)
|
| 108 |
+
+ 0.2791641 * (1 if grade_group == 2 else 0)
|
| 109 |
+
+ 0.5464889 * (1 if grade_group == 3 else 0)
|
| 110 |
+
+ 0.7411321 * (1 if grade_group == 4 else 0)
|
| 111 |
+
+ 1.367963 * (1 if grade_group == 5 else 0)
|
| 112 |
+
+ -0.6837094 * (1 if treatment == 1 else 0)
|
| 113 |
+
+ 0.9084921 * (1 if treatment == 3 else 0)
|
| 114 |
+
+ -0.617722958 * (1 if biopsy50 == 1 else 0)
|
| 115 |
+
+ 0.579225231 * (1 if biopsy50 == 2 else 0)
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
pi_npcm = 0.1226666 * (age - 69.87427439) + 0.6382002 * (
|
| 119 |
+
1 if charlson == 1 else 0
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
time_days = 365 * years
|
| 123 |
+
|
| 124 |
+
pcsm_at_t = 1 - exp(
|
| 125 |
+
-exp(pi_pcsm)
|
| 126 |
+
* exp(-16.40532 + 1.653947 * log(time_days) + 1.89e-12 * (time_days**3))
|
| 127 |
+
)
|
| 128 |
+
npcm_at_t = 1 - exp(
|
| 129 |
+
-exp(pi_npcm)
|
| 130 |
+
* exp(-12.4841 + 1.32274 * log(time_days) + 2.90e-12 * (time_days**3))
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
pcs_survival = 1 - pcsm_at_t
|
| 134 |
+
npc_survival = 1 - npcm_at_t
|
| 135 |
+
overall_mortality = 1 - pcs_survival * npc_survival
|
| 136 |
+
pca_proportion = (
|
| 137 |
+
pcsm_at_t / (npcm_at_t + pcsm_at_t) if (npcm_at_t + pcsm_at_t) > 0 else 0
|
| 138 |
+
)
|
| 139 |
+
predicted_pcsm = pca_proportion * overall_mortality
|
| 140 |
+
predicted_npcm = (1 - pca_proportion) * overall_mortality
|
| 141 |
+
|
| 142 |
+
return {
|
| 143 |
+
"pcsm": predicted_pcsm * 100.0,
|
| 144 |
+
"npcm": predicted_npcm * 100.0,
|
| 145 |
+
"overall": overall_mortality * 100.0,
|
| 146 |
+
}
|
| 147 |
+
|
| 148 |
+
def compute_score(self, user: UserInput) -> str:
|
| 149 |
+
"""Compute the mortality prediction score.
|
| 150 |
+
|
| 151 |
+
Args:
|
| 152 |
+
user: The user profile.
|
| 153 |
+
|
| 154 |
+
Returns:
|
| 155 |
+
Formatted string with 15-year mortality predictions.
|
| 156 |
+
"""
|
| 157 |
+
is_valid, errors = self.validate_inputs(user)
|
| 158 |
+
if not is_valid:
|
| 159 |
+
return f"N/A: Invalid inputs - {'; '.join(errors)}"
|
| 160 |
+
|
| 161 |
+
if user.demographics.sex != Sex.MALE:
|
| 162 |
+
return "N/A: Prostate mortality model applies to male patients only."
|
| 163 |
+
|
| 164 |
+
try:
|
| 165 |
+
risk = self.absolute_risk(user, years=15)
|
| 166 |
+
except ValueError as exc:
|
| 167 |
+
return f"N/A: {exc}"
|
| 168 |
+
|
| 169 |
+
return (
|
| 170 |
+
f"15-year PCSM: {risk['pcsm']:.1f}%, "
|
| 171 |
+
f"NPCM: {risk['npcm']:.1f}%, "
|
| 172 |
+
f"Overall: {risk['overall']:.1f}%"
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
def cancer_type(self) -> str:
|
| 176 |
+
"""Return the cancer type handled by this model.
|
| 177 |
+
|
| 178 |
+
Returns:
|
| 179 |
+
Cancer type label.
|
| 180 |
+
"""
|
| 181 |
+
return "prostate"
|
| 182 |
+
|
| 183 |
+
def description(self) -> str:
|
| 184 |
+
"""Return a description of the model.
|
| 185 |
+
|
| 186 |
+
Returns:
|
| 187 |
+
Human-readable model description.
|
| 188 |
+
"""
|
| 189 |
+
return (
|
| 190 |
+
"The Predict Prostate model estimates prostate cancer-specific mortality (PCSM) "
|
| 191 |
+
"and non-prostate cancer mortality (NPCM) for men diagnosed with non-metastatic "
|
| 192 |
+
"prostate cancer. The model uses competing risks methodology to account for death "
|
| 193 |
+
"from other causes and provides personalized mortality predictions at 15 years "
|
| 194 |
+
"based on age, PSA, grade group, T stage, comorbidities, and treatment."
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
def interpretation(self) -> str:
|
| 198 |
+
"""Return interpretation guidelines for the score.
|
| 199 |
+
|
| 200 |
+
Returns:
|
| 201 |
+
User-facing interpretation guidance.
|
| 202 |
+
"""
|
| 203 |
+
return (
|
| 204 |
+
"Outputs three percentages: prostate cancer-specific mortality (PCSM), "
|
| 205 |
+
"non-prostate cancer mortality (NPCM), and overall mortality at 15 years. "
|
| 206 |
+
"These predictions help inform treatment decisions by comparing conservative "
|
| 207 |
+
"management with radical treatment outcomes. Results should be interpreted "
|
| 208 |
+
"alongside clinical judgment and patient preferences."
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
def references(self) -> list[str]:
|
| 212 |
+
"""Return academic references for the model.
|
| 213 |
+
|
| 214 |
+
Returns:
|
| 215 |
+
List of references.
|
| 216 |
+
"""
|
| 217 |
+
return [
|
| 218 |
+
"Thurtle D, Bratt O, Stattin P, et al. Comparative performance and external validation "
|
| 219 |
+
"of the multivariable Predict Prostate tool for non-metastatic prostate cancer: "
|
| 220 |
+
"a study in 69,206 men from Prostate Cancer data Base Sweden (PCBaSe). "
|
| 221 |
+
"BMC Med. 2019;17:144.",
|
| 222 |
+
"Predict Prostate: https://prostate.predict.cam/tool",
|
| 223 |
+
]
|
src/sentinel/user_input.py
CHANGED
|
@@ -360,13 +360,13 @@ class PSATest(StrictBaseModel):
|
|
| 360 |
"""PSA (Prostate-Specific Antigen) test result.
|
| 361 |
|
| 362 |
Attributes:
|
| 363 |
-
value_ng_ml: PSA value in ng/mL (valid range: 0-
|
| 364 |
date: Date when test was performed
|
| 365 |
"""
|
| 366 |
|
| 367 |
value_ng_ml: float = Field(
|
| 368 |
ge=0,
|
| 369 |
-
le=
|
| 370 |
description="PSA value in ng/mL",
|
| 371 |
examples=[2.5, 4.0, 8.5],
|
| 372 |
)
|
|
@@ -545,6 +545,34 @@ class NSAIDUse(str, Enum):
|
|
| 545 |
FORMER = "former"
|
| 546 |
|
| 547 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 548 |
# ---------------------------------------------------------------------------
|
| 549 |
# Dermatologic Enums (All converted to str, Enum)
|
| 550 |
# ---------------------------------------------------------------------------
|
|
@@ -1060,6 +1088,37 @@ class PersonalMedicalHistory(StrictBaseModel):
|
|
| 1060 |
description="History of prior PSA screening tests (before current test)",
|
| 1061 |
examples=[True, False],
|
| 1062 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1063 |
|
| 1064 |
|
| 1065 |
# ---------------------------------------------------------------------------
|
|
|
|
| 360 |
"""PSA (Prostate-Specific Antigen) test result.
|
| 361 |
|
| 362 |
Attributes:
|
| 363 |
+
value_ng_ml: PSA value in ng/mL (valid range: 0-100)
|
| 364 |
date: Date when test was performed
|
| 365 |
"""
|
| 366 |
|
| 367 |
value_ng_ml: float = Field(
|
| 368 |
ge=0,
|
| 369 |
+
le=100,
|
| 370 |
description="PSA value in ng/mL",
|
| 371 |
examples=[2.5, 4.0, 8.5],
|
| 372 |
)
|
|
|
|
| 545 |
FORMER = "former"
|
| 546 |
|
| 547 |
|
| 548 |
+
class ProstateCancerTreatment(str, Enum):
|
| 549 |
+
"""Primary treatment types for prostate cancer.
|
| 550 |
+
|
| 551 |
+
Attributes:
|
| 552 |
+
CONSERVATIVE: Conservative management or active surveillance
|
| 553 |
+
RADICAL: Radical treatment (surgery or radiotherapy)
|
| 554 |
+
ADT_ALONE: Androgen deprivation therapy alone
|
| 555 |
+
"""
|
| 556 |
+
|
| 557 |
+
CONSERVATIVE = "conservative"
|
| 558 |
+
RADICAL = "radical"
|
| 559 |
+
ADT_ALONE = "adt_alone"
|
| 560 |
+
|
| 561 |
+
|
| 562 |
+
class ProstateBiopsyCoresInvolved(str, Enum):
|
| 563 |
+
"""Percentage of prostate biopsy cores involved with cancer.
|
| 564 |
+
|
| 565 |
+
Attributes:
|
| 566 |
+
UNKNOWN: Unknown or not included
|
| 567 |
+
LESS_THAN_50_PERCENT: Less than 50% of cores involved
|
| 568 |
+
FIFTY_PERCENT_OR_MORE: 50% or more of cores involved
|
| 569 |
+
"""
|
| 570 |
+
|
| 571 |
+
UNKNOWN = "unknown"
|
| 572 |
+
LESS_THAN_50_PERCENT = "less_than_50_percent"
|
| 573 |
+
FIFTY_PERCENT_OR_MORE = "50_percent_or_more"
|
| 574 |
+
|
| 575 |
+
|
| 576 |
# ---------------------------------------------------------------------------
|
| 577 |
# Dermatologic Enums (All converted to str, Enum)
|
| 578 |
# ---------------------------------------------------------------------------
|
|
|
|
| 1088 |
description="History of prior PSA screening tests (before current test)",
|
| 1089 |
examples=[True, False],
|
| 1090 |
)
|
| 1091 |
+
prostate_cancer_grade_group: int | None = Field(
|
| 1092 |
+
None,
|
| 1093 |
+
ge=1,
|
| 1094 |
+
le=5,
|
| 1095 |
+
description="Histological grade group at diagnosis (1-5)",
|
| 1096 |
+
examples=[1, 2, 3, 4, 5],
|
| 1097 |
+
)
|
| 1098 |
+
prostate_cancer_t_stage: int | None = Field(
|
| 1099 |
+
None,
|
| 1100 |
+
ge=1,
|
| 1101 |
+
le=4,
|
| 1102 |
+
description="Clinical T stage at diagnosis (1-4)",
|
| 1103 |
+
examples=[1, 2, 3, 4],
|
| 1104 |
+
)
|
| 1105 |
+
charlson_comorbidity_score: int | None = Field(
|
| 1106 |
+
None,
|
| 1107 |
+
ge=0,
|
| 1108 |
+
le=1,
|
| 1109 |
+
description="Charlson comorbidity score (0=none, 1=one or more comorbidities)",
|
| 1110 |
+
examples=[0, 1],
|
| 1111 |
+
)
|
| 1112 |
+
prostate_cancer_treatment: ProstateCancerTreatment | None = Field(
|
| 1113 |
+
None,
|
| 1114 |
+
description="Primary treatment received (conservative, radical, or ADT alone)",
|
| 1115 |
+
examples=["conservative", "radical", "adt_alone"],
|
| 1116 |
+
)
|
| 1117 |
+
prostate_biopsy_cores_involved: ProstateBiopsyCoresInvolved | None = Field(
|
| 1118 |
+
None,
|
| 1119 |
+
description="Percentage of biopsy cores with cancer",
|
| 1120 |
+
examples=["unknown", "less_than_50_percent", "50_percent_or_more"],
|
| 1121 |
+
)
|
| 1122 |
|
| 1123 |
|
| 1124 |
# ---------------------------------------------------------------------------
|
tests/test_risk_models/test_prostate_mortality_model.py
ADDED
|
@@ -0,0 +1,412 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Tests for the Prostate Cancer Mortality prediction model.
|
| 2 |
+
|
| 3 |
+
Web calculator available at: https://prostate.predict.cam/tool
|
| 4 |
+
|
| 5 |
+
NOTE: This implementation is based on the Stata reference code from the published
|
| 6 |
+
model. There are discrepancies with the current web calculator, particularly for
|
| 7 |
+
cases with comorbidities (charlson=1), suggesting the web calculator may use an
|
| 8 |
+
updated version or different calibration. Our implementation matches the Stata
|
| 9 |
+
code exactly.
|
| 10 |
+
"""
|
| 11 |
+
|
| 12 |
+
import pytest
|
| 13 |
+
|
| 14 |
+
from sentinel.risk_models.prostate_mortality import ProstateMortalityRiskModel
|
| 15 |
+
from sentinel.user_input import (
|
| 16 |
+
Anthropometrics,
|
| 17 |
+
ClinicalTests,
|
| 18 |
+
Demographics,
|
| 19 |
+
Ethnicity,
|
| 20 |
+
Lifestyle,
|
| 21 |
+
PersonalMedicalHistory,
|
| 22 |
+
ProstateCancerTreatment,
|
| 23 |
+
PSATest,
|
| 24 |
+
Sex,
|
| 25 |
+
SmokingHistory,
|
| 26 |
+
SmokingStatus,
|
| 27 |
+
UserInput,
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def create_test_user(
|
| 32 |
+
age: int,
|
| 33 |
+
psa: float,
|
| 34 |
+
grade_group: int,
|
| 35 |
+
t_stage: int,
|
| 36 |
+
charlson: int = 0,
|
| 37 |
+
treatment: ProstateCancerTreatment = ProstateCancerTreatment.CONSERVATIVE,
|
| 38 |
+
ethnicity: Ethnicity = Ethnicity.WHITE,
|
| 39 |
+
) -> UserInput:
|
| 40 |
+
"""Create a test user with specified prostate cancer parameters.
|
| 41 |
+
|
| 42 |
+
Args:
|
| 43 |
+
age: Patient age in years.
|
| 44 |
+
psa: PSA value in ng/mL.
|
| 45 |
+
grade_group: Histological grade group (1-5).
|
| 46 |
+
t_stage: Clinical T stage (1-4).
|
| 47 |
+
charlson: Charlson comorbidity score (0-1).
|
| 48 |
+
treatment: Primary treatment received.
|
| 49 |
+
ethnicity: Patient ethnicity.
|
| 50 |
+
|
| 51 |
+
Returns:
|
| 52 |
+
UserInput instance configured for prostate mortality testing.
|
| 53 |
+
"""
|
| 54 |
+
return UserInput(
|
| 55 |
+
demographics=Demographics(
|
| 56 |
+
age_years=age,
|
| 57 |
+
sex=Sex.MALE,
|
| 58 |
+
ethnicity=ethnicity,
|
| 59 |
+
anthropometrics=Anthropometrics(height_cm=175.0, weight_kg=80.0),
|
| 60 |
+
),
|
| 61 |
+
lifestyle=Lifestyle(
|
| 62 |
+
smoking=SmokingHistory(status=SmokingStatus.NEVER, pack_years=0.0),
|
| 63 |
+
),
|
| 64 |
+
personal_medical_history=PersonalMedicalHistory(
|
| 65 |
+
prostate_cancer_grade_group=grade_group,
|
| 66 |
+
prostate_cancer_t_stage=t_stage,
|
| 67 |
+
charlson_comorbidity_score=charlson,
|
| 68 |
+
prostate_cancer_treatment=treatment,
|
| 69 |
+
),
|
| 70 |
+
family_history=[],
|
| 71 |
+
clinical_tests=ClinicalTests(
|
| 72 |
+
psa=PSATest(value_ng_ml=psa),
|
| 73 |
+
),
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
GROUND_TRUTH_CASES = [
|
| 78 |
+
{
|
| 79 |
+
"name": "low_risk_young",
|
| 80 |
+
"age": 55,
|
| 81 |
+
"psa": 5.0,
|
| 82 |
+
"grade_group": 1,
|
| 83 |
+
"t_stage": 1,
|
| 84 |
+
"charlson": 0,
|
| 85 |
+
"treatment": ProstateCancerTreatment.CONSERVATIVE,
|
| 86 |
+
"expected_pcsm_15yr": 7.0,
|
| 87 |
+
"expected_npcm_15yr": 8.0,
|
| 88 |
+
"expected_overall_15yr": 15.0,
|
| 89 |
+
},
|
| 90 |
+
{
|
| 91 |
+
"name": "medium_risk_example",
|
| 92 |
+
"age": 65,
|
| 93 |
+
"psa": 11.0,
|
| 94 |
+
"grade_group": 4,
|
| 95 |
+
"t_stage": 2,
|
| 96 |
+
"charlson": 0,
|
| 97 |
+
"treatment": ProstateCancerTreatment.CONSERVATIVE,
|
| 98 |
+
"expected_pcsm_15yr": 19.0,
|
| 99 |
+
"expected_npcm_15yr": 26.0,
|
| 100 |
+
"expected_overall_15yr": 45.0,
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"name": "moderate_risk",
|
| 104 |
+
"age": 60,
|
| 105 |
+
"psa": 8.0,
|
| 106 |
+
"grade_group": 3,
|
| 107 |
+
"t_stage": 2,
|
| 108 |
+
"charlson": 0,
|
| 109 |
+
"treatment": ProstateCancerTreatment.CONSERVATIVE,
|
| 110 |
+
"expected_pcsm_15yr": 15.0,
|
| 111 |
+
"expected_npcm_15yr": 15.0,
|
| 112 |
+
"expected_overall_15yr": 30.0,
|
| 113 |
+
},
|
| 114 |
+
]
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
class TestProstateMortalityRiskModel:
|
| 118 |
+
"""Test suite for ProstateMortalityRiskModel."""
|
| 119 |
+
|
| 120 |
+
def setup_method(self) -> None:
|
| 121 |
+
"""Set up test fixtures."""
|
| 122 |
+
self.model = ProstateMortalityRiskModel()
|
| 123 |
+
|
| 124 |
+
def test_metadata(self) -> None:
|
| 125 |
+
"""Test model metadata including name, cancer type, and references."""
|
| 126 |
+
assert self.model.name == "prostate_mortality"
|
| 127 |
+
assert self.model.cancer_type() == "prostate"
|
| 128 |
+
assert "Predict Prostate" in self.model.description()
|
| 129 |
+
assert "PCSM" in self.model.description()
|
| 130 |
+
assert "mortality" in self.model.interpretation().lower()
|
| 131 |
+
assert len(self.model.references()) > 0
|
| 132 |
+
assert any("predict" in ref.lower() for ref in self.model.references())
|
| 133 |
+
|
| 134 |
+
def test_absolute_risk_basic(self) -> None:
|
| 135 |
+
"""Test basic absolute risk calculation returns valid percentages."""
|
| 136 |
+
user = UserInput(
|
| 137 |
+
demographics=Demographics(
|
| 138 |
+
age_years=65,
|
| 139 |
+
sex=Sex.MALE,
|
| 140 |
+
ethnicity=Ethnicity.WHITE,
|
| 141 |
+
anthropometrics=Anthropometrics(height_cm=175.0, weight_kg=80.0),
|
| 142 |
+
),
|
| 143 |
+
lifestyle=Lifestyle(
|
| 144 |
+
smoking=SmokingHistory(status=SmokingStatus.NEVER, pack_years=0.0),
|
| 145 |
+
),
|
| 146 |
+
personal_medical_history=PersonalMedicalHistory(
|
| 147 |
+
prostate_cancer_grade_group=2,
|
| 148 |
+
prostate_cancer_t_stage=1,
|
| 149 |
+
charlson_comorbidity_score=0,
|
| 150 |
+
),
|
| 151 |
+
family_history=[],
|
| 152 |
+
clinical_tests=ClinicalTests(
|
| 153 |
+
psa=PSATest(value_ng_ml=5.0),
|
| 154 |
+
),
|
| 155 |
+
)
|
| 156 |
+
risks = self.model.absolute_risk(user, years=15)
|
| 157 |
+
assert risks["pcsm"] > 0
|
| 158 |
+
assert risks["npcm"] > 0
|
| 159 |
+
assert risks["overall"] > 0
|
| 160 |
+
assert risks["pcsm"] < 100
|
| 161 |
+
assert risks["npcm"] < 100
|
| 162 |
+
assert risks["overall"] <= 100
|
| 163 |
+
|
| 164 |
+
@pytest.mark.parametrize("case", GROUND_TRUTH_CASES, ids=lambda case: case["name"])
|
| 165 |
+
def test_ground_truth_cases(self, case) -> None:
|
| 166 |
+
"""Test model predictions against validated web calculator results.
|
| 167 |
+
|
| 168 |
+
Args:
|
| 169 |
+
case: Test case dictionary with patient parameters and expected results.
|
| 170 |
+
"""
|
| 171 |
+
if case["expected_pcsm_15yr"] is None:
|
| 172 |
+
pytest.skip("TODO: Fill in expected values from web calculator")
|
| 173 |
+
|
| 174 |
+
user = create_test_user(
|
| 175 |
+
age=case["age"],
|
| 176 |
+
psa=case["psa"],
|
| 177 |
+
grade_group=case["grade_group"],
|
| 178 |
+
t_stage=case["t_stage"],
|
| 179 |
+
charlson=case["charlson"],
|
| 180 |
+
treatment=case["treatment"],
|
| 181 |
+
ethnicity=case.get("ethnicity", Ethnicity.WHITE),
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
risks = self.model.absolute_risk(user, years=15)
|
| 185 |
+
assert risks["pcsm"] == pytest.approx(case["expected_pcsm_15yr"], abs=4.0)
|
| 186 |
+
assert risks["npcm"] == pytest.approx(case["expected_npcm_15yr"], abs=4.0)
|
| 187 |
+
assert risks["overall"] == pytest.approx(case["expected_overall_15yr"], abs=4.0)
|
| 188 |
+
|
| 189 |
+
def test_compute_score_with_male_user_input(self) -> None:
|
| 190 |
+
"""Test compute_score returns formatted string for valid male user."""
|
| 191 |
+
user = UserInput(
|
| 192 |
+
demographics=Demographics(
|
| 193 |
+
age_years=65,
|
| 194 |
+
sex=Sex.MALE,
|
| 195 |
+
ethnicity=Ethnicity.WHITE,
|
| 196 |
+
anthropometrics=Anthropometrics(height_cm=175.0, weight_kg=80.0),
|
| 197 |
+
),
|
| 198 |
+
lifestyle=Lifestyle(
|
| 199 |
+
smoking=SmokingHistory(status=SmokingStatus.NEVER, pack_years=0.0),
|
| 200 |
+
),
|
| 201 |
+
personal_medical_history=PersonalMedicalHistory(
|
| 202 |
+
prostate_cancer_grade_group=2,
|
| 203 |
+
prostate_cancer_t_stage=1,
|
| 204 |
+
charlson_comorbidity_score=0,
|
| 205 |
+
prostate_cancer_treatment=ProstateCancerTreatment.CONSERVATIVE,
|
| 206 |
+
),
|
| 207 |
+
family_history=[],
|
| 208 |
+
clinical_tests=ClinicalTests(
|
| 209 |
+
psa=PSATest(value_ng_ml=5.0),
|
| 210 |
+
),
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
score = self.model.compute_score(user)
|
| 214 |
+
assert "PCSM" in score
|
| 215 |
+
assert "NPCM" in score
|
| 216 |
+
assert "Overall" in score
|
| 217 |
+
assert "%" in score
|
| 218 |
+
|
| 219 |
+
def test_compute_score_rejects_female_user(self) -> None:
|
| 220 |
+
"""Test model correctly rejects female patients."""
|
| 221 |
+
user = UserInput(
|
| 222 |
+
demographics=Demographics(
|
| 223 |
+
age_years=65,
|
| 224 |
+
sex=Sex.FEMALE,
|
| 225 |
+
ethnicity=Ethnicity.WHITE,
|
| 226 |
+
anthropometrics=Anthropometrics(height_cm=165.0, weight_kg=70.0),
|
| 227 |
+
),
|
| 228 |
+
lifestyle=Lifestyle(
|
| 229 |
+
smoking=SmokingHistory(status=SmokingStatus.NEVER, pack_years=0.0),
|
| 230 |
+
),
|
| 231 |
+
personal_medical_history=PersonalMedicalHistory(
|
| 232 |
+
prostate_cancer_grade_group=2,
|
| 233 |
+
prostate_cancer_t_stage=1,
|
| 234 |
+
),
|
| 235 |
+
family_history=[],
|
| 236 |
+
clinical_tests=ClinicalTests(
|
| 237 |
+
psa=PSATest(value_ng_ml=5.0),
|
| 238 |
+
),
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
score = self.model.compute_score(user)
|
| 242 |
+
assert "N/A" in score
|
| 243 |
+
assert "male" in score.lower()
|
| 244 |
+
|
| 245 |
+
def test_validation_errors(self) -> None:
|
| 246 |
+
"""Test validation errors for missing required fields."""
|
| 247 |
+
user = UserInput(
|
| 248 |
+
demographics=Demographics(
|
| 249 |
+
age_years=65,
|
| 250 |
+
sex=Sex.MALE,
|
| 251 |
+
ethnicity=Ethnicity.WHITE,
|
| 252 |
+
anthropometrics=Anthropometrics(height_cm=175.0, weight_kg=80.0),
|
| 253 |
+
),
|
| 254 |
+
lifestyle=Lifestyle(
|
| 255 |
+
smoking=SmokingHistory(status=SmokingStatus.NEVER, pack_years=0.0),
|
| 256 |
+
),
|
| 257 |
+
personal_medical_history=PersonalMedicalHistory(),
|
| 258 |
+
family_history=[],
|
| 259 |
+
clinical_tests=ClinicalTests(),
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
score = self.model.compute_score(user)
|
| 263 |
+
assert "N/A" in score
|
| 264 |
+
assert "Invalid" in score
|
| 265 |
+
|
| 266 |
+
def test_age_out_of_range(self) -> None:
|
| 267 |
+
"""Test age outside validated range raises error."""
|
| 268 |
+
user = UserInput(
|
| 269 |
+
demographics=Demographics(
|
| 270 |
+
age_years=30,
|
| 271 |
+
sex=Sex.MALE,
|
| 272 |
+
ethnicity=Ethnicity.WHITE,
|
| 273 |
+
anthropometrics=Anthropometrics(height_cm=175.0, weight_kg=80.0),
|
| 274 |
+
),
|
| 275 |
+
lifestyle=Lifestyle(
|
| 276 |
+
smoking=SmokingHistory(status=SmokingStatus.NEVER, pack_years=0.0),
|
| 277 |
+
),
|
| 278 |
+
personal_medical_history=PersonalMedicalHistory(
|
| 279 |
+
prostate_cancer_grade_group=2,
|
| 280 |
+
prostate_cancer_t_stage=1,
|
| 281 |
+
),
|
| 282 |
+
family_history=[],
|
| 283 |
+
clinical_tests=ClinicalTests(
|
| 284 |
+
psa=PSATest(value_ng_ml=5.0),
|
| 285 |
+
),
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
score = self.model.compute_score(user)
|
| 289 |
+
assert "N/A" in score
|
| 290 |
+
|
| 291 |
+
def test_psa_validation(self) -> None:
|
| 292 |
+
"""Test PSA value validation at boundary values."""
|
| 293 |
+
user = UserInput(
|
| 294 |
+
demographics=Demographics(
|
| 295 |
+
age_years=65,
|
| 296 |
+
sex=Sex.MALE,
|
| 297 |
+
ethnicity=Ethnicity.WHITE,
|
| 298 |
+
anthropometrics=Anthropometrics(height_cm=175.0, weight_kg=80.0),
|
| 299 |
+
),
|
| 300 |
+
lifestyle=Lifestyle(
|
| 301 |
+
smoking=SmokingHistory(status=SmokingStatus.NEVER, pack_years=0.0),
|
| 302 |
+
),
|
| 303 |
+
personal_medical_history=PersonalMedicalHistory(
|
| 304 |
+
prostate_cancer_grade_group=2,
|
| 305 |
+
prostate_cancer_t_stage=1,
|
| 306 |
+
),
|
| 307 |
+
family_history=[],
|
| 308 |
+
clinical_tests=ClinicalTests(),
|
| 309 |
+
)
|
| 310 |
+
|
| 311 |
+
score = self.model.compute_score(user)
|
| 312 |
+
assert "N/A" in score
|
| 313 |
+
|
| 314 |
+
def test_competing_risks_consistency(self) -> None:
|
| 315 |
+
"""Test competing risks sum correctly to overall mortality."""
|
| 316 |
+
user = UserInput(
|
| 317 |
+
demographics=Demographics(
|
| 318 |
+
age_years=65,
|
| 319 |
+
sex=Sex.MALE,
|
| 320 |
+
ethnicity=Ethnicity.WHITE,
|
| 321 |
+
anthropometrics=Anthropometrics(height_cm=175.0, weight_kg=80.0),
|
| 322 |
+
),
|
| 323 |
+
lifestyle=Lifestyle(
|
| 324 |
+
smoking=SmokingHistory(status=SmokingStatus.NEVER, pack_years=0.0),
|
| 325 |
+
),
|
| 326 |
+
personal_medical_history=PersonalMedicalHistory(
|
| 327 |
+
prostate_cancer_grade_group=3,
|
| 328 |
+
prostate_cancer_t_stage=2,
|
| 329 |
+
charlson_comorbidity_score=1,
|
| 330 |
+
),
|
| 331 |
+
family_history=[],
|
| 332 |
+
clinical_tests=ClinicalTests(
|
| 333 |
+
psa=PSATest(value_ng_ml=10.0),
|
| 334 |
+
),
|
| 335 |
+
)
|
| 336 |
+
|
| 337 |
+
risks = self.model.absolute_risk(user, years=15)
|
| 338 |
+
total = risks["pcsm"] + risks["npcm"]
|
| 339 |
+
assert total == pytest.approx(risks["overall"], abs=0.5)
|
| 340 |
+
|
| 341 |
+
def test_different_time_horizons(self) -> None:
|
| 342 |
+
"""Test model predictions for different time horizons."""
|
| 343 |
+
user = UserInput(
|
| 344 |
+
demographics=Demographics(
|
| 345 |
+
age_years=65,
|
| 346 |
+
sex=Sex.MALE,
|
| 347 |
+
ethnicity=Ethnicity.WHITE,
|
| 348 |
+
anthropometrics=Anthropometrics(height_cm=175.0, weight_kg=80.0),
|
| 349 |
+
),
|
| 350 |
+
lifestyle=Lifestyle(
|
| 351 |
+
smoking=SmokingHistory(status=SmokingStatus.NEVER, pack_years=0.0),
|
| 352 |
+
),
|
| 353 |
+
personal_medical_history=PersonalMedicalHistory(
|
| 354 |
+
prostate_cancer_grade_group=2,
|
| 355 |
+
prostate_cancer_t_stage=1,
|
| 356 |
+
),
|
| 357 |
+
family_history=[],
|
| 358 |
+
clinical_tests=ClinicalTests(
|
| 359 |
+
psa=PSATest(value_ng_ml=5.0),
|
| 360 |
+
),
|
| 361 |
+
)
|
| 362 |
+
|
| 363 |
+
risk_5yr = self.model.absolute_risk(user, years=5)
|
| 364 |
+
risk_10yr = self.model.absolute_risk(user, years=10)
|
| 365 |
+
risk_15yr = self.model.absolute_risk(user, years=15)
|
| 366 |
+
|
| 367 |
+
assert risk_5yr["pcsm"] < risk_10yr["pcsm"] < risk_15yr["pcsm"]
|
| 368 |
+
assert risk_5yr["npcm"] < risk_10yr["npcm"] < risk_15yr["npcm"]
|
| 369 |
+
assert risk_5yr["overall"] < risk_10yr["overall"] < risk_15yr["overall"]
|
| 370 |
+
|
| 371 |
+
def test_treatment_effect_radical_vs_conservative(self) -> None:
|
| 372 |
+
"""Test radical treatment reduces PCSM compared to conservative treatment."""
|
| 373 |
+
base_input = {
|
| 374 |
+
"demographics": Demographics(
|
| 375 |
+
age_years=65,
|
| 376 |
+
sex=Sex.MALE,
|
| 377 |
+
ethnicity=Ethnicity.WHITE,
|
| 378 |
+
anthropometrics=Anthropometrics(height_cm=175.0, weight_kg=80.0),
|
| 379 |
+
),
|
| 380 |
+
"lifestyle": Lifestyle(
|
| 381 |
+
smoking=SmokingHistory(status=SmokingStatus.NEVER, pack_years=0.0),
|
| 382 |
+
),
|
| 383 |
+
"family_history": [],
|
| 384 |
+
"clinical_tests": ClinicalTests(
|
| 385 |
+
psa=PSATest(value_ng_ml=10.0),
|
| 386 |
+
),
|
| 387 |
+
}
|
| 388 |
+
|
| 389 |
+
user_conservative = UserInput(
|
| 390 |
+
**base_input,
|
| 391 |
+
personal_medical_history=PersonalMedicalHistory(
|
| 392 |
+
prostate_cancer_grade_group=3,
|
| 393 |
+
prostate_cancer_t_stage=2,
|
| 394 |
+
charlson_comorbidity_score=0,
|
| 395 |
+
prostate_cancer_treatment=ProstateCancerTreatment.CONSERVATIVE,
|
| 396 |
+
),
|
| 397 |
+
)
|
| 398 |
+
|
| 399 |
+
user_radical = UserInput(
|
| 400 |
+
**base_input,
|
| 401 |
+
personal_medical_history=PersonalMedicalHistory(
|
| 402 |
+
prostate_cancer_grade_group=3,
|
| 403 |
+
prostate_cancer_t_stage=2,
|
| 404 |
+
charlson_comorbidity_score=0,
|
| 405 |
+
prostate_cancer_treatment=ProstateCancerTreatment.RADICAL,
|
| 406 |
+
),
|
| 407 |
+
)
|
| 408 |
+
|
| 409 |
+
risk_conservative = self.model.absolute_risk(user_conservative, years=15)
|
| 410 |
+
risk_radical = self.model.absolute_risk(user_radical, years=15)
|
| 411 |
+
|
| 412 |
+
assert risk_radical["pcsm"] < risk_conservative["pcsm"]
|