Spaces:
Sleeping
Sleeping
docs: Add demo GIF to README
Browse files- README.md +13 -10
- app/app.py +8 -2
- gradcam/gradcam.py +216 -0
README.md
CHANGED
|
@@ -11,14 +11,14 @@ A deep learning-based malaria detection system using ResNet50 and Grad-CAM expla
|
|
| 11 |
|
| 12 |
## π οΈ Built With
|
| 13 |
|
| 14 |
-
- [PyTorch](https://pytorch.org/)
|
| 15 |
-
- [Streamlit](https://streamlit.io/)
|
| 16 |
-
- [Grad-CAM](https://arxiv.org/abs/1610.02391)
|
| 17 |
-
- [ResNet50](https://pytorch.org/vision/stable/models.html)
|
| 18 |
|
| 19 |
## π¦ Dataset
|
| 20 |
|
| 21 |
-
Uses the [Malaria Cell Images Dataset](https://www.kaggle.com/iarunava/cell-images-for-detecting-malaria)
|
| 22 |
|
| 23 |
## π Folder Structure
|
| 24 |
|
|
@@ -27,13 +27,16 @@ data/cell_images/
|
|
| 27 |
βββ Parasitized/
|
| 28 |
βββ Uninfected/
|
| 29 |
|
|
|
|
| 30 |
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-

|
| 34 |
|
| 35 |
## π§ͺ Usage
|
| 36 |
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
| 38 |
```bash
|
| 39 |
-
python
|
|
|
|
|
|
| 11 |
|
| 12 |
## π οΈ Built With
|
| 13 |
|
| 14 |
+
- [PyTorch](https://pytorch.org/)
|
| 15 |
+
- [Streamlit](https://streamlit.io/)
|
| 16 |
+
- [Grad-CAM](https://arxiv.org/abs/1610.02391)
|
| 17 |
+
- [ResNet50](https://pytorch.org/vision/stable/models.html)
|
| 18 |
|
| 19 |
## π¦ Dataset
|
| 20 |
|
| 21 |
+
Uses the [Malaria Cell Images Dataset](https://www.kaggle.com/iarunava/cell-images-for-detecting-malaria)
|
| 22 |
|
| 23 |
## π Folder Structure
|
| 24 |
|
|
|
|
| 27 |
βββ Parasitized/
|
| 28 |
βββ Uninfected/
|
| 29 |
|
| 30 |
+
## Here's a quick preview of the app in action:
|
| 31 |
|
| 32 |
+

|
|
|
|
|
|
|
| 33 |
|
| 34 |
## π§ͺ Usage
|
| 35 |
|
| 36 |
+
## π οΈ Requirements
|
| 37 |
+
|
| 38 |
+
Install dependencies:
|
| 39 |
+
|
| 40 |
```bash
|
| 41 |
+
pip install torch torchvision streamlit opencv-python matplotlib scikit-learn
|
| 42 |
+
```
|
app/app.py
CHANGED
|
@@ -5,6 +5,12 @@ from PIL import Image
|
|
| 5 |
import numpy as np
|
| 6 |
import warnings
|
| 7 |
import torch.nn.functional as F
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# Avoid OMP error from PyTorch/OpenCV
|
| 10 |
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
|
|
@@ -13,8 +19,8 @@ os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
|
|
| 13 |
warnings.filterwarnings("ignore", category=UserWarning)
|
| 14 |
|
| 15 |
# Import custom modules
|
| 16 |
-
from models.resnet_model import MalariaResNet50
|
| 17 |
-
from gradcam import visualize_gradcam
|
| 18 |
|
| 19 |
|
| 20 |
# -----------------------------
|
|
|
|
| 5 |
import numpy as np
|
| 6 |
import warnings
|
| 7 |
import torch.nn.functional as F
|
| 8 |
+
# Add root to PYTHONPATH
|
| 9 |
+
import sys
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
|
| 12 |
+
# Add root directory to Python path
|
| 13 |
+
sys.path.append(str(Path(__file__).parent.parent))
|
| 14 |
|
| 15 |
# Avoid OMP error from PyTorch/OpenCV
|
| 16 |
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
|
|
|
|
| 19 |
warnings.filterwarnings("ignore", category=UserWarning)
|
| 20 |
|
| 21 |
# Import custom modules
|
| 22 |
+
from models.resnet_model import MalariaResNet50
|
| 23 |
+
from gradcam.gradcam import visualize_gradcam
|
| 24 |
|
| 25 |
|
| 26 |
# -----------------------------
|
gradcam/gradcam.py
ADDED
|
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# coding: utf-8
|
| 3 |
+
|
| 4 |
+
# In[1]:
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
import torch.nn.functional as F
|
| 10 |
+
import cv2
|
| 11 |
+
import numpy as np
|
| 12 |
+
from torchvision import transforms
|
| 13 |
+
import matplotlib.pyplot as plt
|
| 14 |
+
from PIL import Image
|
| 15 |
+
import streamlit as st
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
# In[2]:
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def preprocess_image(image_path):
|
| 22 |
+
"""
|
| 23 |
+
Load and preprocess an image for inference.
|
| 24 |
+
"""
|
| 25 |
+
transform = transforms.Compose([
|
| 26 |
+
transforms.Resize((224, 224)),
|
| 27 |
+
transforms.ToTensor(),
|
| 28 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
| 29 |
+
])
|
| 30 |
+
|
| 31 |
+
img = Image.open(image_path).convert('RGB')
|
| 32 |
+
tensor = transform(img)
|
| 33 |
+
return tensor.unsqueeze(0), img
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
# In[3]:
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def get_last_conv_layer(model):
|
| 40 |
+
"""
|
| 41 |
+
Get the last convolutional layer in the model.
|
| 42 |
+
"""
|
| 43 |
+
# For ResNet architecture
|
| 44 |
+
for name, module in reversed(list(model.named_modules())):
|
| 45 |
+
if isinstance(module, nn.Conv2d):
|
| 46 |
+
return name
|
| 47 |
+
raise ValueError("No Conv2d layers found in the model.")
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
# In[4]:
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def apply_gradcam(model, image_tensor, target_class=None):
|
| 54 |
+
"""
|
| 55 |
+
Apply Grad-CAM to an image.
|
| 56 |
+
"""
|
| 57 |
+
device = next(model.parameters()).device
|
| 58 |
+
image_tensor = image_tensor.to(device)
|
| 59 |
+
|
| 60 |
+
# Register hooks to get activations and gradients
|
| 61 |
+
features = []
|
| 62 |
+
gradients = []
|
| 63 |
+
|
| 64 |
+
def forward_hook(module, input, output):
|
| 65 |
+
features.append(output.detach())
|
| 66 |
+
|
| 67 |
+
def backward_hook(module, grad_input, grad_output):
|
| 68 |
+
gradients.append(grad_output[0].detach())
|
| 69 |
+
|
| 70 |
+
last_conv_layer_name = get_last_conv_layer(model)
|
| 71 |
+
last_conv_layer = dict(model.named_modules())[last_conv_layer_name]
|
| 72 |
+
handle_forward = last_conv_layer.register_forward_hook(forward_hook)
|
| 73 |
+
handle_backward = last_conv_layer.register_full_backward_hook(backward_hook)
|
| 74 |
+
|
| 75 |
+
# Forward pass
|
| 76 |
+
model.eval()
|
| 77 |
+
output = model(image_tensor)
|
| 78 |
+
if target_class is None:
|
| 79 |
+
target_class = output.argmax(dim=1).item()
|
| 80 |
+
|
| 81 |
+
# Zero out all gradients
|
| 82 |
+
model.zero_grad()
|
| 83 |
+
|
| 84 |
+
# Backward pass
|
| 85 |
+
one_hot = torch.zeros_like(output)
|
| 86 |
+
one_hot[0][target_class] = 1
|
| 87 |
+
output.backward(gradient=one_hot)
|
| 88 |
+
|
| 89 |
+
# Remove hooks
|
| 90 |
+
handle_forward.remove()
|
| 91 |
+
handle_backward.remove()
|
| 92 |
+
|
| 93 |
+
# Get feature maps and gradients
|
| 94 |
+
feature_map = features[-1].squeeze().cpu().numpy()
|
| 95 |
+
gradient = gradients[-1].squeeze().cpu().numpy()
|
| 96 |
+
|
| 97 |
+
# Global Average Pooling on gradients
|
| 98 |
+
pooled_gradients = np.mean(gradient, axis=(1, 2), keepdims=True)
|
| 99 |
+
cam = feature_map * pooled_gradients
|
| 100 |
+
cam = np.sum(cam, axis=0)
|
| 101 |
+
|
| 102 |
+
# Apply ReLU
|
| 103 |
+
cam = np.maximum(cam, 0)
|
| 104 |
+
|
| 105 |
+
# Normalize the CAM
|
| 106 |
+
cam = cam - np.min(cam)
|
| 107 |
+
cam = cam / np.max(cam)
|
| 108 |
+
|
| 109 |
+
# Resize CAM to match the original image size
|
| 110 |
+
cam = cv2.resize(cam, (224, 224))
|
| 111 |
+
|
| 112 |
+
return cam
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
# In[5]:
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def overlay_heatmap(original_image, heatmap, alpha=0.5):
|
| 119 |
+
"""
|
| 120 |
+
Overlay the heatmap on the original image.
|
| 121 |
+
|
| 122 |
+
Args:
|
| 123 |
+
original_image (np.ndarray): Original image (H, W, 3), uint8
|
| 124 |
+
heatmap (np.ndarray): Grad-CAM heatmap (H', W'), float between 0 and 1
|
| 125 |
+
alpha (float): Weight for the heatmap
|
| 126 |
+
|
| 127 |
+
Returns:
|
| 128 |
+
np.ndarray: Overlayed image
|
| 129 |
+
"""
|
| 130 |
+
# Ensure heatmap is 2D
|
| 131 |
+
if heatmap.ndim == 3:
|
| 132 |
+
heatmap = np.mean(heatmap, axis=2)
|
| 133 |
+
|
| 134 |
+
# Resize heatmap to match original image size
|
| 135 |
+
heatmap_resized = cv2.resize(heatmap, (original_image.shape[1], original_image.shape[0]))
|
| 136 |
+
|
| 137 |
+
# Normalize heatmap to [0, 255]
|
| 138 |
+
heatmap_resized = np.uint8(255 * heatmap_resized)
|
| 139 |
+
|
| 140 |
+
# Apply colormap
|
| 141 |
+
heatmap_colored = cv2.applyColorMap(heatmap_resized, cv2.COLORMAP_JET)
|
| 142 |
+
|
| 143 |
+
# Convert from BGR to RGB
|
| 144 |
+
heatmap_colored = cv2.cvtColor(heatmap_colored, cv2.COLOR_BGR2RGB)
|
| 145 |
+
|
| 146 |
+
# Superimpose: blend heatmap and original image
|
| 147 |
+
superimposed_img = heatmap_colored * alpha + original_image * (1 - alpha)
|
| 148 |
+
return np.uint8(superimposed_img)
|
| 149 |
+
|
| 150 |
+
def visualize_gradcam(model, image_path):
|
| 151 |
+
"""
|
| 152 |
+
Visualize Grad-CAM for a given image.
|
| 153 |
+
"""
|
| 154 |
+
# Preprocess image
|
| 155 |
+
image_tensor, original_image = preprocess_image(image_path)
|
| 156 |
+
original_image_np = np.array(original_image) # PIL -> numpy array
|
| 157 |
+
|
| 158 |
+
# Resize original image for better display
|
| 159 |
+
max_size = (400, 400) # Max width and height
|
| 160 |
+
original_image_resized = cv2.resize(original_image_np, max_size)
|
| 161 |
+
|
| 162 |
+
# Apply Grad-CAM
|
| 163 |
+
cam = apply_gradcam(model, image_tensor)
|
| 164 |
+
|
| 165 |
+
# Resize CAM to match original image size
|
| 166 |
+
heatmap_resized = cv2.resize(cam, (original_image_np.shape[1], original_image_np.shape[0]))
|
| 167 |
+
|
| 168 |
+
# Normalize heatmap to [0, 255]
|
| 169 |
+
heatmap_resized = np.uint8(255 * heatmap_resized / np.max(heatmap_resized))
|
| 170 |
+
|
| 171 |
+
# Apply color map
|
| 172 |
+
heatmap_colored = cv2.applyColorMap(heatmap_resized, cv2.COLORMAP_JET)
|
| 173 |
+
heatmap_colored = cv2.cvtColor(heatmap_colored, cv2.COLOR_BGR2RGB)
|
| 174 |
+
|
| 175 |
+
# Overlay
|
| 176 |
+
superimposed_img = heatmap_colored * 0.4 + original_image_np * 0.6
|
| 177 |
+
superimposed_img = np.clip(superimposed_img, 0, 255).astype(np.uint8)
|
| 178 |
+
|
| 179 |
+
# Display results
|
| 180 |
+
fig, axes = plt.subplots(1, 2, figsize=(8, 4)) # Adjust figsize as needed
|
| 181 |
+
axes[0].imshow(original_image_resized)
|
| 182 |
+
axes[0].set_title("Original Image")
|
| 183 |
+
axes[0].axis("off")
|
| 184 |
+
|
| 185 |
+
axes[1].imshow(superimposed_img)
|
| 186 |
+
axes[1].set_title("Grad-CAM Heatmap")
|
| 187 |
+
axes[1].axis("off")
|
| 188 |
+
|
| 189 |
+
plt.tight_layout()
|
| 190 |
+
st.pyplot(fig)
|
| 191 |
+
plt.close(fig)
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
# In[6]:
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
if __name__ == "__main__":
|
| 198 |
+
|
| 199 |
+
from models.resnet_model import MalariaResNet50
|
| 200 |
+
# Load your trained model
|
| 201 |
+
model = MalariaResNet50(num_classes=2)
|
| 202 |
+
model.load_state_dict(torch.load("models/malaria_model.pth"))
|
| 203 |
+
model.eval()
|
| 204 |
+
|
| 205 |
+
# Path to an image
|
| 206 |
+
image_path = "malaria_ds/split_dataset/test/Parasitized/C33P1thinF_IMG_20150619_114756a_cell_181.png"
|
| 207 |
+
|
| 208 |
+
# Visualize Grad-CAM
|
| 209 |
+
visualize_gradcam(model, image_path)
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
# In[ ]:
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
|