Spaces:
Running
Running
| # Copyright 2024 the LlamaFactory team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import os | |
| import random | |
| import pytest | |
| from datasets import load_dataset | |
| from llamafactory.data import get_dataset | |
| from llamafactory.hparams import get_train_args | |
| from llamafactory.model import load_tokenizer | |
| TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") | |
| TRAIN_ARGS = { | |
| "model_name_or_path": TINY_LLAMA, | |
| "stage": "sft", | |
| "do_train": True, | |
| "finetuning_type": "full", | |
| "dataset": "llamafactory/tiny-supervised-dataset", | |
| "dataset_dir": "ONLINE", | |
| "template": "llama3", | |
| "cutoff_len": 8192, | |
| "overwrite_cache": True, | |
| "output_dir": "dummy_dir", | |
| "overwrite_output_dir": True, | |
| "fp16": True, | |
| } | |
| def test_supervised(num_samples: int): | |
| model_args, data_args, training_args, _, _ = get_train_args(TRAIN_ARGS) | |
| tokenizer_module = load_tokenizer(model_args) | |
| tokenizer = tokenizer_module["tokenizer"] | |
| tokenized_data = get_dataset(model_args, data_args, training_args, stage="sft", **tokenizer_module) | |
| original_data = load_dataset(TRAIN_ARGS["dataset"], split="train") | |
| indexes = random.choices(range(len(original_data)), k=num_samples) | |
| for index in indexes: | |
| decoded_result = tokenizer.decode(tokenized_data["input_ids"][index]) | |
| prompt = original_data[index]["instruction"] | |
| if original_data[index]["input"]: | |
| prompt += "\n" + original_data[index]["input"] | |
| messages = [ | |
| {"role": "user", "content": prompt}, | |
| {"role": "assistant", "content": original_data[index]["output"]}, | |
| ] | |
| templated_result = tokenizer.apply_chat_template(messages, tokenize=False) | |
| assert decoded_result == templated_result | |