Spaces:
Sleeping
Sleeping
| import os | |
| from llama_index.core import SimpleDirectoryReader, VectorStoreIndex, StorageContext, Settings | |
| from llama_index.embeddings.fastembed import FastEmbedEmbedding | |
| # ----- 1) Load Data ----- | |
| files_to_index = [ | |
| "./Lebenslauf_SuhasKamuni.pdf", | |
| "./about_me.txt", | |
| "./more_about_me.txt" | |
| ] | |
| try: | |
| documents = SimpleDirectoryReader(input_files=files_to_index).load_data() | |
| print(f"Loaded {len(documents)} document(s) from ./Portfolio_German/") | |
| except FileNotFoundError: | |
| print("Error: './Portfolio_German/' folder not found.") | |
| exit() | |
| # ----- 2) Configure Embedding Model ----- | |
| try: | |
| embed_model = FastEmbedEmbedding(model_name="BAAI/bge-small-en-v1.5") | |
| Settings.embed_model = embed_model | |
| print("✅ Hugging Face embedding model configured.") | |
| except Exception as e: | |
| print(f"Error configuring Hugging Face model: {e}") | |
| exit() | |
| # ----- 3) Build and Store Index ----- | |
| index = VectorStoreIndex.from_documents(documents, show_progress=True) | |
| index.storage_context.persist(persist_dir="./index_storage") | |
| print("\n✅ Portfolio index built.") | |