import os from llama_index.core import SimpleDirectoryReader, VectorStoreIndex, StorageContext, Settings from llama_index.embeddings.fastembed import FastEmbedEmbedding # ----- 1) Load Data ----- files_to_index = [ "./Lebenslauf_SuhasKamuni.pdf", "./about_me.txt", "./more_about_me.txt" ] try: documents = SimpleDirectoryReader(input_files=files_to_index).load_data() print(f"Loaded {len(documents)} document(s) from ./Portfolio_German/") except FileNotFoundError: print("Error: './Portfolio_German/' folder not found.") exit() # ----- 2) Configure Embedding Model ----- try: embed_model = FastEmbedEmbedding(model_name="BAAI/bge-small-en-v1.5") Settings.embed_model = embed_model print("āœ… Hugging Face embedding model configured.") except Exception as e: print(f"Error configuring Hugging Face model: {e}") exit() # ----- 3) Build and Store Index ----- index = VectorStoreIndex.from_documents(documents, show_progress=True) index.storage_context.persist(persist_dir="./index_storage") print("\nāœ… Portfolio index built.")