# Import libraries import gradio as gr from transformers import pipeline from huggingface_hub import InferenceClient from huggingface_hub import InferenceApi import numpy import huggingface_hub import torch # assuming you're using PyTorch import json import pandas as pd import sentencepiece import accelerate import safetensors from transformers import T5Tokenizer, T5ForConditionalGeneration # Set the model tokenizer = T5Tokenizer.from_pretrained('Tianlin668/MentalT5') model = T5ForConditionalGeneration.from_pretrained('Tianlin668/MentalT5') # Generate text def infer(prompt): input = f"<|startoftext|> {prompt.strip()}" input = tokenizer(input, return_tensors="pt").to(model.device) input_ids = input["input_ids"] attention_mask = input["attention_mask"] output = model.generate(input_ids, attention_mask=attention_mask, max_new_tokens=100, do_sample = True, top_k = 50, top_p = 0.85) output = tokenizer.decode(output[0], skip_special_tokens=True) return output # Set interface iface = gr.Interface(fn=infer, inputs=[gr.Textbox(label="Ask the Mental Doc Bot anything")], outputs="textbox") if __name__ == "__main__": iface.launch()