Spaces:
Sleeping
Sleeping
File size: 6,609 Bytes
83e8e50 34f5d6a 83e8e50 be51205 34f5d6a 83e8e50 34f5d6a be51205 83e8e50 34f5d6a 83e8e50 34f5d6a 83e8e50 34f5d6a 83e8e50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import gradio as gr
from transformers import pipeline, MarianTokenizer, AutoModelForSeq2SeqLM
import torch
import unicodedata
import re
import whisper
import tempfile
import os
import nltk
nltk.download('punkt')
from nltk.tokenize import sent_tokenize
import fitz # PyMuPDF
import docx
from bs4 import BeautifulSoup
import markdown2
import chardet
# Device setup
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load Darija MarianMT model from HF hub (cached manually)
translator = None
whisper_model = None
HF_TOKEN = os.getenv("HF_TOKEN")
def load_darija_model():
global translator
if translator is None:
model_name = "LocaleNLP/english_darija"
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, token=HF_TOKEN).to(device)
tokenizer = MarianTokenizer.from_pretrained(model_name, token=HF_TOKEN)
translator = pipeline("translation", model=model, tokenizer=tokenizer, device=0 if device.type == 'cuda' else -1)
return translator
def load_whisper_model():
global whisper_model
if whisper_model is None:
whisper_model = whisper.load_model("base")
return whisper_model
def transcribe_audio(audio_file):
model = load_whisper_model()
if isinstance(audio_file, str):
audio_path = audio_file
else:
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
tmp.write(audio_file.read())
audio_path = tmp.name
result = model.transcribe(audio_path)
if not isinstance(audio_file, str):
os.remove(audio_path)
return result["text"]
def extract_text_from_file(uploaded_file):
# Handle both filepath (str) and file-like object
if isinstance(uploaded_file, str):
file_path = uploaded_file
file_type = file_path.split('.')[-1].lower()
with open(file_path, "rb") as f:
content = f.read()
else:
file_type = uploaded_file.name.split('.')[-1].lower()
content = uploaded_file.read()
if file_type == "pdf":
with fitz.open(stream=content, filetype="pdf") as doc:
return "\n".join([page.get_text() for page in doc])
elif file_type == "docx":
if isinstance(uploaded_file, str):
doc = docx.Document(file_path)
else:
doc = docx.Document(uploaded_file)
return "\n".join([para.text for para in doc.paragraphs])
else:
encoding = chardet.detect(content)['encoding']
if encoding:
content = content.decode(encoding, errors='ignore')
if file_type in ("html", "htm"):
soup = BeautifulSoup(content, "html.parser")
return soup.get_text()
elif file_type == "md":
html = markdown2.markdown(content)
soup = BeautifulSoup(html, "html.parser")
return soup.get_text()
elif file_type == "srt":
return re.sub(r"\d+\n\d{2}:\d{2}:\d{2},\d{3} --> .*?\n", "", content)
elif file_type in ("txt", "text"):
return content
else:
raise ValueError("Unsupported file type")
def translate(text):
translator = load_darija_model()
lang_tag = ">>dar<<"
paragraphs = text.split("\n")
translated_output = []
with torch.no_grad():
for para in paragraphs:
if not para.strip():
translated_output.append("")
continue
sentences = [s.strip() for s in para.split('. ') if s.strip()]
formatted = [f"{lang_tag} {s}" for s in sentences]
results = translator(formatted,
max_length=5000,
num_beams=5,
early_stopping=True,
no_repeat_ngram_size=3,
repetition_penalty=1.5,
length_penalty=1.2)
translated_sentences = [r['translation_text'].capitalize() for r in results]
translated_output.append('. '.join(translated_sentences))
return "\n".join(translated_output)
def process_input(input_mode, text, audio_file, file_obj):
input_text = ""
if input_mode == "Text":
input_text = text
elif input_mode == "Audio":
if audio_file is not None:
input_text = transcribe_audio(audio_file)
elif input_mode == "File":
if file_obj is not None:
input_text = extract_text_from_file(file_obj)
return input_text
def translate_and_return(text):
if not text.strip():
return "No input text to translate."
return translate(text)
# Gradio UI components
with gr.Blocks() as demo:
gr.Markdown("## LocaleNLP English-to-Darija Translator")
gr.Markdown("Upload English text, audio, or document to translate to Darija using Localenlp model.")
with gr.Row():
input_mode = gr.Radio(choices=["Text", "Audio", "File"], label="Select input mode", value="Text")
input_text = gr.Textbox(label="Enter English text", lines=10, visible=True)
audio_input = gr.Audio(label="Upload audio (.wav, .mp3, .m4a)", type="filepath", visible=False)
file_input = gr.File(file_types=['.pdf', '.docx', '.html', '.htm', '.md', '.srt', '.txt'], label="Upload document", visible=False)
extracted_text = gr.Textbox(label="Extracted / Transcribed Text", lines=10, interactive=False)
translate_button = gr.Button("Translate to Darija")
output_text = gr.Textbox(label="Translated Darija Text", lines=10, interactive=False)
def update_visibility(mode):
return {
input_text: gr.update(visible=(mode=="Text")),
audio_input: gr.update(visible=(mode=="Audio")),
file_input: gr.update(visible=(mode=="File")),
extracted_text: gr.update(value="", visible=True),
output_text: gr.update(value="")
}
input_mode.change(fn=update_visibility, inputs=input_mode, outputs=[input_text, audio_input, file_input, extracted_text, output_text])
def handle_process(mode, text, audio, file_obj):
try:
extracted = process_input(mode, text, audio, file_obj)
return extracted, ""
except Exception as e:
return "", f"Error: {str(e)}"
translate_button.click(fn=handle_process, inputs=[input_mode, input_text, audio_input, file_input], outputs=[extracted_text, output_text])
def handle_translate(text):
return translate_and_return(text)
translate_button.click(fn=handle_translate, inputs=extracted_text, outputs=output_text)
demo.launch()
|