File size: 6,289 Bytes
d333245
4b69e7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d333245
4b69e7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d333245
 
 
 
 
 
 
 
 
 
774c080
d333245
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
774c080
d333245
 
 
 
 
4b69e7c
d333245
 
4b69e7c
 
d333245
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import gradio as gr
from transformers import pipeline, MarianTokenizer, AutoModelForSeq2SeqLM
import torch
import unicodedata
import re
import whisper
import tempfile
import os
import nltk
nltk.download('punkt')
from nltk.tokenize import sent_tokenize

# Additions for file processing
import fitz  # PyMuPDF for PDF
import docx
from bs4 import BeautifulSoup
import markdown2
import chardet

# --- Device selection ---
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# --- Load translation models ---
def load_models():
    en_dar_model_path = "/LocaleNLP/English_Hausa"
    en_wol_model_path = "/LocaleNLP/eng_wolof"
    en_hau_model_path = "/LocaleNLP/English_Darija"

    en_dar_model = AutoModelForSeq2SeqLM.from_pretrained(en_dar_model_path).to(device)
    en_dar_tokenizer = MarianTokenizer.from_pretrained(en_dar_model_path)
    
    en_wol_model = AutoModelForSeq2SeqLM.from_pretrained(en_wol_model_path).to(device)
    en_wol_tokenizer = MarianTokenizer.from_pretrained(en_wol_model_path)
    
    en_hau_model = AutoModelForSeq2SeqLM.from_pretrained(en_hau_model_path).to(device)
    en_hau_tokenizer = MarianTokenizer.from_pretrained(en_hau_model_path)

    en_dar_translator = pipeline("translation", model=en_dar_model, tokenizer=en_dar_tokenizer, device=0 if device.type == 'cuda' else -1)
    en_wol_translator = pipeline("translation", model=en_wol_model, tokenizer=en_wol_tokenizer, device=0 if device.type == 'cuda' else -1)
    en_hau_translator = pipeline("translation", model=en_hau_model, tokenizer=en_hau_tokenizer, device=0 if device.type == 'cuda' else -1)

    return en_dar_translator, en_hau_translator, en_wol_translator

def load_whisper_model():
    return whisper.load_model("base")

def transcribe_audio(audio_path):
    whisper_model = load_whisper_model()
    return whisper_model.transcribe(audio_path)["text"]

def translate(text, target_lang):
    en_dar_translator, en_hau_translator, en_wol_translator = load_models()

    if target_lang == "Darija (Morocco)":
        translator = en_dar_translator
    elif target_lang == "Hausa (Nigeria)":
        translator = en_hau_translator
    elif target_lang == "Wolof (Senegal)":
        translator = en_wol_translator
    else:
        raise ValueError("Unsupported target language")

    lang_tag = {
        "Darija (Morocco)": ">>dar<<",
        "Hausa (Nigeria)": ">>hau<<",
        "Wolof (Senegal)": ">>wol<<"
    }[target_lang]

    paragraphs = text.split("\n")
    translated_output = []

    with torch.no_grad():
        for para in paragraphs:
            if not para.strip():
                translated_output.append("")
                continue
            sentences = [s.strip() for s in para.split('. ') if s.strip()]
            formatted = [f"{lang_tag} {s}" for s in sentences]

            results = translator(formatted, 
                                 max_length=5000, 
                                 num_beams=5, 
                                 early_stopping=True,
                                 no_repeat_ngram_size=3,
                                 repetition_penalty=1.5,
                                 length_penalty=1.2)
            translated_sentences = [r['translation_text'].capitalize() for r in results]
            translated_output.append('. '.join(translated_sentences))

    return "\n".join(translated_output)

# --- Extract text from file ---
def extract_text_from_file(uploaded_file):
    file_type = uploaded_file.name.split('.')[-1].lower()
    content = uploaded_file.read()

    if file_type == "pdf":
        with fitz.open(stream=content, filetype="pdf") as doc:
            return "\n".join([page.get_text() for page in doc])
    elif file_type == "docx":
        doc = docx.Document(uploaded_file)
        return "\n".join([para.text for para in doc.paragraphs])
    else:
        encoding = chardet.detect(content)['encoding']
        if encoding:
            content = content.decode(encoding, errors='ignore')
        if file_type in ("html", "htm"):
            soup = BeautifulSoup(content, "html.parser")
            return soup.get_text()
        elif file_type == "md":
            html = markdown2.markdown(content)
            soup = BeautifulSoup(html, "html.parser")
            return soup.get_text()
        elif file_type == "srt":
            return re.sub(r"\d+\n\d{2}:\d{2}:\d{2},\d{3} --> .*?\n", "", content)
        elif file_type in ("txt", "text"):
            return content
        else:
            raise ValueError("Unsupported file type")

# --- Main Gradio Function ---
def process(input_mode, target_lang, text_input, audio_input, file_input):
    input_text = ""

    if input_mode == "Text" and text_input:
        input_text = text_input
    elif input_mode == "Audio" and audio_input:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
            tmp.write(audio_input.read())
            tmp_path = tmp.name
        input_text = transcribe_audio(audio_input)
        os.remove(tmp_path)
    elif input_mode == "File" and file_input:
        input_text = extract_text_from_file(file_input)

    if not input_text.strip():
        return "", "No input text provided."

    translated_text = translate(input_text, target_lang)
    return input_text, translated_text

# --- Gradio Interface ---
with gr.Blocks() as demo:
    gr.Markdown("## 🌐 LocaleNLP Translator β€” English ↔ Darija / Hausa / Wolof")

    with gr.Row():
        input_mode = gr.Dropdown(["Text", "Audio", "File"], label="Select input mode")
        target_lang = gr.Dropdown(["Darija (Morocco)", "Hausa (Nigeria)", "Wolof (Senegal)"], label="Select target language")

    with gr.Row():
        text_input = gr.Textbox(label="Enter English text", lines=10)
        audio_input = gr.Audio(type="filepath", label="Upload Audio")
        file_input = gr.File(label="Upload Document")

    with gr.Row():
        extracted_text = gr.Textbox(label="Extracted / Transcribed Text", lines=10)
        translated_output = gr.Textbox(label="Translated Text", lines=10)

    run_btn = gr.Button("Translate")
    run_btn.click(process, inputs=[input_mode, target_lang, text_input, audio_input, file_input], outputs=[extracted_text, translated_output])

if __name__ == "__main__":
    demo.launch()