File size: 6,737 Bytes
d333245
4b69e7c
 
 
 
 
 
 
 
 
4f9d2c8
4b69e7c
 
 
 
 
 
 
 
 
4f9d2c8
4b69e7c
 
ce7b853
 
 
4b69e7c
4f9d2c8
 
4b69e7c
4f9d2c8
 
4b69e7c
4f9d2c8
 
4b69e7c
 
 
 
 
 
 
 
 
 
89263ca
 
 
 
 
 
 
 
 
 
 
 
4b69e7c
 
d333245
4b69e7c
 
 
 
 
 
 
 
 
 
 
 
 
 
bd386d7
4b69e7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89263ca
 
 
 
 
 
 
 
 
4b69e7c
 
 
 
 
89263ca
 
 
 
4b69e7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bea29b
 
d333245
 
9bea29b
d333245
9bea29b
774c080
9bea29b
d333245
 
 
9bea29b
d333245
 
 
 
 
 
 
 
9bea29b
 
 
 
d333245
 
9bea29b
 
 
d333245
 
 
 
4b69e7c
d333245
9bea29b
4b69e7c
 
d333245
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import gradio as gr
from transformers import pipeline, MarianTokenizer, AutoModelForSeq2SeqLM
import torch
import re
import whisper
import tempfile
import os
import nltk
nltk.download('punkt')
from nltk.tokenize import sent_tokenize
import os
# Additions for file processing
import fitz  # PyMuPDF for PDF
import docx
from bs4 import BeautifulSoup
import markdown2
import chardet

# --- Device selection ---
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
HF_TOKEN = os.getenv("HF_TOKEN")
# --- Load translation models ---
def load_models():
    en_dar_model_path = "LocaleNLP/english_hausa"
    en_wol_model_path = "LocaleNLP/eng_wolof"
    en_hau_model_path = "LocaleNLP/english_darija"

    en_dar_model = AutoModelForSeq2SeqLM.from_pretrained(en_dar_model_path, token=HF_TOKEN).to(device)
    en_dar_tokenizer = MarianTokenizer.from_pretrained(en_dar_model_path, token=HF_TOKEN)
    
    en_wol_model = AutoModelForSeq2SeqLM.from_pretrained(en_wol_model_path, token=HF_TOKEN).to(device)
    en_wol_tokenizer = MarianTokenizer.from_pretrained(en_wol_model_path, token=HF_TOKEN)
    
    en_hau_model = AutoModelForSeq2SeqLM.from_pretrained(en_hau_model_path, token=HF_TOKEN).to(device)
    en_hau_tokenizer = MarianTokenizer.from_pretrained(en_hau_model_path, token=HF_TOKEN)

    en_dar_translator = pipeline("translation", model=en_dar_model, tokenizer=en_dar_tokenizer, device=0 if device.type == 'cuda' else -1)
    en_wol_translator = pipeline("translation", model=en_wol_model, tokenizer=en_wol_tokenizer, device=0 if device.type == 'cuda' else -1)
    en_hau_translator = pipeline("translation", model=en_hau_model, tokenizer=en_hau_tokenizer, device=0 if device.type == 'cuda' else -1)

    return en_dar_translator, en_hau_translator, en_wol_translator

def load_whisper_model():
    return whisper.load_model("base")

def transcribe_audio(audio_file):
    model = load_whisper_model()
    if isinstance(audio_file, str):
        audio_path = audio_file
    else:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
            tmp.write(audio_file.read())
            audio_path = tmp.name
    result = model.transcribe(audio_path)
    if not isinstance(audio_file, str):
        os.remove(audio_path)
    return result["text"]

def translate(text, target_lang):
    en_dar_translator, en_hau_translator, en_wol_translator = load_models()

    if target_lang == "Darija (Morocco)":
        translator = en_dar_translator
    elif target_lang == "Hausa (Nigeria)":
        translator = en_hau_translator
    elif target_lang == "Wolof (Senegal)":
        translator = en_wol_translator
    else:
        raise ValueError("Unsupported target language")

    lang_tag = {
        "Darija (Morocco)": ">>dar<<",
        "Hausa (Nigeria)": ">>hau<<",
        "Wolof (Senegal)": ">>wol<<"
    }

    paragraphs = text.split("\n")
    translated_output = []

    with torch.no_grad():
        for para in paragraphs:
            if not para.strip():
                translated_output.append("")
                continue
            sentences = [s.strip() for s in para.split('. ') if s.strip()]
            formatted = [f"{lang_tag} {s}" for s in sentences]

            results = translator(formatted, 
                                 max_length=5000, 
                                 num_beams=5, 
                                 early_stopping=True,
                                 no_repeat_ngram_size=3,
                                 repetition_penalty=1.5,
                                 length_penalty=1.2)
            translated_sentences = [r['translation_text'].capitalize() for r in results]
            translated_output.append('. '.join(translated_sentences))

    return "\n".join(translated_output)

# --- Extract text from file ---
def extract_text_from_file(uploaded_file):
    # Handle both filepath (str) and file-like object
    if isinstance(uploaded_file, str):
        file_path = uploaded_file
        file_type = file_path.split('.')[-1].lower()
        with open(file_path, "rb") as f:
            content = f.read()
    else:
        file_type = uploaded_file.name.split('.')[-1].lower()
        content = uploaded_file.read()

    if file_type == "pdf":
        with fitz.open(stream=content, filetype="pdf") as doc:
            return "\n".join([page.get_text() for page in doc])
    elif file_type == "docx":
        if isinstance(uploaded_file, str):
            doc = docx.Document(file_path)
        else:
            doc = docx.Document(uploaded_file)
        return "\n".join([para.text for para in doc.paragraphs])
    else:
        encoding = chardet.detect(content)['encoding']
        if encoding:
            content = content.decode(encoding, errors='ignore')
        if file_type in ("html", "htm"):
            soup = BeautifulSoup(content, "html.parser")
            return soup.get_text()
        elif file_type == "md":
            html = markdown2.markdown(content)
            soup = BeautifulSoup(html, "html.parser")
            return soup.get_text()
        elif file_type == "srt":
            return re.sub(r"\d+\n\d{2}:\d{2}:\d{2},\d{3} --> .*?\n", "", content)
        elif file_type in ("txt", "text"):
            return content
        else:
            raise ValueError("Unsupported file type")

# --- Main Function ---
def process(target_lang, text_input, audio_input, file_input):
    input_text = ""

    if text_input and text_input.strip():
        input_text = text_input
    elif audio_input:
        input_text = transcribe_audio(audio_input)
    elif file_input:
        input_text = extract_text_from_file(file_input)

    if not input_text.strip():
        return "", "No valid input provided."

    translated_text = translate(input_text, target_lang)
    return input_text, translated_text

# --- Gradio Interface ---
with gr.Blocks() as demo:
    gr.Markdown("## 🌐 LocaleNLP Translator β€” English ↔ Darija / Hausa / Wolof")

    target_lang = gr.Dropdown(
        ["Darija (Morocco)", "Hausa (Nigeria)", "Wolof (Senegal)"], 
        label="Select target language"
    )

    with gr.Row():
        text_input = gr.Textbox(label="✏️ Enter English text", lines=10)
        audio_input = gr.Audio(type="filepath", label="πŸ”Š Upload Audio")
        file_input = gr.File(label="πŸ“„ Upload Document")

    with gr.Row():
        extracted_text = gr.Textbox(label="Extracted / Transcribed Text", lines=10)
        translated_output = gr.Textbox(label="Translated Text", lines=10)

    run_btn = gr.Button("Translate")
    run_btn.click(process, inputs=[target_lang, text_input, audio_input, file_input], outputs=[extracted_text, translated_output])

if __name__ == "__main__":
    demo.launch()