Spaces:
Sleeping
Sleeping
File size: 6,737 Bytes
d333245 4b69e7c 4f9d2c8 4b69e7c 4f9d2c8 4b69e7c ce7b853 4b69e7c 4f9d2c8 4b69e7c 4f9d2c8 4b69e7c 4f9d2c8 4b69e7c 89263ca 4b69e7c d333245 4b69e7c bd386d7 4b69e7c 89263ca 4b69e7c 89263ca 4b69e7c 9bea29b d333245 9bea29b d333245 9bea29b 774c080 9bea29b d333245 9bea29b d333245 9bea29b d333245 9bea29b d333245 4b69e7c d333245 9bea29b 4b69e7c d333245 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import gradio as gr
from transformers import pipeline, MarianTokenizer, AutoModelForSeq2SeqLM
import torch
import re
import whisper
import tempfile
import os
import nltk
nltk.download('punkt')
from nltk.tokenize import sent_tokenize
import os
# Additions for file processing
import fitz # PyMuPDF for PDF
import docx
from bs4 import BeautifulSoup
import markdown2
import chardet
# --- Device selection ---
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
HF_TOKEN = os.getenv("HF_TOKEN")
# --- Load translation models ---
def load_models():
en_dar_model_path = "LocaleNLP/english_hausa"
en_wol_model_path = "LocaleNLP/eng_wolof"
en_hau_model_path = "LocaleNLP/english_darija"
en_dar_model = AutoModelForSeq2SeqLM.from_pretrained(en_dar_model_path, token=HF_TOKEN).to(device)
en_dar_tokenizer = MarianTokenizer.from_pretrained(en_dar_model_path, token=HF_TOKEN)
en_wol_model = AutoModelForSeq2SeqLM.from_pretrained(en_wol_model_path, token=HF_TOKEN).to(device)
en_wol_tokenizer = MarianTokenizer.from_pretrained(en_wol_model_path, token=HF_TOKEN)
en_hau_model = AutoModelForSeq2SeqLM.from_pretrained(en_hau_model_path, token=HF_TOKEN).to(device)
en_hau_tokenizer = MarianTokenizer.from_pretrained(en_hau_model_path, token=HF_TOKEN)
en_dar_translator = pipeline("translation", model=en_dar_model, tokenizer=en_dar_tokenizer, device=0 if device.type == 'cuda' else -1)
en_wol_translator = pipeline("translation", model=en_wol_model, tokenizer=en_wol_tokenizer, device=0 if device.type == 'cuda' else -1)
en_hau_translator = pipeline("translation", model=en_hau_model, tokenizer=en_hau_tokenizer, device=0 if device.type == 'cuda' else -1)
return en_dar_translator, en_hau_translator, en_wol_translator
def load_whisper_model():
return whisper.load_model("base")
def transcribe_audio(audio_file):
model = load_whisper_model()
if isinstance(audio_file, str):
audio_path = audio_file
else:
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
tmp.write(audio_file.read())
audio_path = tmp.name
result = model.transcribe(audio_path)
if not isinstance(audio_file, str):
os.remove(audio_path)
return result["text"]
def translate(text, target_lang):
en_dar_translator, en_hau_translator, en_wol_translator = load_models()
if target_lang == "Darija (Morocco)":
translator = en_dar_translator
elif target_lang == "Hausa (Nigeria)":
translator = en_hau_translator
elif target_lang == "Wolof (Senegal)":
translator = en_wol_translator
else:
raise ValueError("Unsupported target language")
lang_tag = {
"Darija (Morocco)": ">>dar<<",
"Hausa (Nigeria)": ">>hau<<",
"Wolof (Senegal)": ">>wol<<"
}
paragraphs = text.split("\n")
translated_output = []
with torch.no_grad():
for para in paragraphs:
if not para.strip():
translated_output.append("")
continue
sentences = [s.strip() for s in para.split('. ') if s.strip()]
formatted = [f"{lang_tag} {s}" for s in sentences]
results = translator(formatted,
max_length=5000,
num_beams=5,
early_stopping=True,
no_repeat_ngram_size=3,
repetition_penalty=1.5,
length_penalty=1.2)
translated_sentences = [r['translation_text'].capitalize() for r in results]
translated_output.append('. '.join(translated_sentences))
return "\n".join(translated_output)
# --- Extract text from file ---
def extract_text_from_file(uploaded_file):
# Handle both filepath (str) and file-like object
if isinstance(uploaded_file, str):
file_path = uploaded_file
file_type = file_path.split('.')[-1].lower()
with open(file_path, "rb") as f:
content = f.read()
else:
file_type = uploaded_file.name.split('.')[-1].lower()
content = uploaded_file.read()
if file_type == "pdf":
with fitz.open(stream=content, filetype="pdf") as doc:
return "\n".join([page.get_text() for page in doc])
elif file_type == "docx":
if isinstance(uploaded_file, str):
doc = docx.Document(file_path)
else:
doc = docx.Document(uploaded_file)
return "\n".join([para.text for para in doc.paragraphs])
else:
encoding = chardet.detect(content)['encoding']
if encoding:
content = content.decode(encoding, errors='ignore')
if file_type in ("html", "htm"):
soup = BeautifulSoup(content, "html.parser")
return soup.get_text()
elif file_type == "md":
html = markdown2.markdown(content)
soup = BeautifulSoup(html, "html.parser")
return soup.get_text()
elif file_type == "srt":
return re.sub(r"\d+\n\d{2}:\d{2}:\d{2},\d{3} --> .*?\n", "", content)
elif file_type in ("txt", "text"):
return content
else:
raise ValueError("Unsupported file type")
# --- Main Function ---
def process(target_lang, text_input, audio_input, file_input):
input_text = ""
if text_input and text_input.strip():
input_text = text_input
elif audio_input:
input_text = transcribe_audio(audio_input)
elif file_input:
input_text = extract_text_from_file(file_input)
if not input_text.strip():
return "", "No valid input provided."
translated_text = translate(input_text, target_lang)
return input_text, translated_text
# --- Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("## π LocaleNLP Translator β English β Darija / Hausa / Wolof")
target_lang = gr.Dropdown(
["Darija (Morocco)", "Hausa (Nigeria)", "Wolof (Senegal)"],
label="Select target language"
)
with gr.Row():
text_input = gr.Textbox(label="βοΈ Enter English text", lines=10)
audio_input = gr.Audio(type="filepath", label="π Upload Audio")
file_input = gr.File(label="π Upload Document")
with gr.Row():
extracted_text = gr.Textbox(label="Extracted / Transcribed Text", lines=10)
translated_output = gr.Textbox(label="Translated Text", lines=10)
run_btn = gr.Button("Translate")
run_btn.click(process, inputs=[target_lang, text_input, audio_input, file_input], outputs=[extracted_text, translated_output])
if __name__ == "__main__":
demo.launch()
|