Spaces:
Sleeping
Sleeping
Upload 3 files
Browse filesFirst Version of Gender Classification demo
app.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from custom_torch_module.deploy_utils import Onnx_deploy_model
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import time
|
| 4 |
+
from PIL import Image
|
| 5 |
+
|
| 6 |
+
model_path = "deploying model/" + "vit_xsmall_patch16_clip_224(trainble_0.15) (Acc 98.44%, Loss 0.168152).onnx"
|
| 7 |
+
input_size = [1, 3, 224, 224]
|
| 8 |
+
img_size = input_size[-1]
|
| 9 |
+
|
| 10 |
+
title = "Gender Vision mini"
|
| 11 |
+
description = "An ViT(xsmall_clip) based model(fine tuned with Custom dataset : around 800 train images & 200 test iamges) Accuracy : around 98.4% with the custom test dataset. Optimized with ONNX(around 1.7 times faster than PyTorch version on cpu)"
|
| 12 |
+
article = "Through bunch of fine tuning and experiments. !REMEMBER! This model can be wrong."
|
| 13 |
+
|
| 14 |
+
def predict(img):
|
| 15 |
+
start_time = time.time()
|
| 16 |
+
output = onnx_model.run(img, return_prob=True)
|
| 17 |
+
end_time = time.time()
|
| 18 |
+
elapsed_time = end_time - start_time
|
| 19 |
+
|
| 20 |
+
pred_label_and_probs = {"Men" : output[0],"Women" : output[1]}
|
| 21 |
+
|
| 22 |
+
return pred_label_and_probs, elapsed_time
|
| 23 |
+
|
| 24 |
+
onnx_model = Onnx_deploy_model(model_path=model_path, img_size=img_size)
|
| 25 |
+
|
| 26 |
+
# Create the Gradio demo
|
| 27 |
+
demo = gr.Interface(fn=predict,
|
| 28 |
+
inputs=gr.Image(type="pil"),
|
| 29 |
+
outputs=[gr.Label(num_top_classes=2, label="Predictions"),
|
| 30 |
+
gr.Number(label="Prediction time (s)")],
|
| 31 |
+
title=title,
|
| 32 |
+
description=description,
|
| 33 |
+
article=article)
|
| 34 |
+
|
| 35 |
+
# Launch the demo
|
| 36 |
+
demo.launch()
|
custom_torch_module/deploy_utils.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import timm
|
| 3 |
+
import numpy as np
|
| 4 |
+
import onnx
|
| 5 |
+
import onnxruntime
|
| 6 |
+
from PIL import Image
|
| 7 |
+
|
| 8 |
+
def export_onnx(model, weight_path, export_path, input_size:list, device="cpu"):
|
| 9 |
+
"""
|
| 10 |
+
Save model with weights as onnx file
|
| 11 |
+
"""
|
| 12 |
+
torch.set_default_device(device)
|
| 13 |
+
|
| 14 |
+
weights = torch.load(f=weight_path)
|
| 15 |
+
model.load_state_dict(weights)
|
| 16 |
+
model.eval()
|
| 17 |
+
|
| 18 |
+
example_input = torch.empty(input_size)
|
| 19 |
+
|
| 20 |
+
# 모델 변환
|
| 21 |
+
torch.onnx.export(model,
|
| 22 |
+
example_input,
|
| 23 |
+
export_path,
|
| 24 |
+
export_params=True,
|
| 25 |
+
do_constant_folding=True,
|
| 26 |
+
input_names = ['input'],
|
| 27 |
+
output_names = ['output'],
|
| 28 |
+
dynamic_axes={'input' : {0 : 'batch_size'},
|
| 29 |
+
'output' : {0 : 'batch_size'}})
|
| 30 |
+
print("[info] The model has succesfull exported.")
|
| 31 |
+
print(f"[info] File Path : {export_path}")
|
| 32 |
+
|
| 33 |
+
class Onnx_deploy_model():
|
| 34 |
+
def __init__(self, model_path, img_size):
|
| 35 |
+
onnx_model = onnx.load(model_path)
|
| 36 |
+
onnx.checker.check_model(onnx_model)
|
| 37 |
+
|
| 38 |
+
self.ort_session = onnxruntime.InferenceSession(model_path)
|
| 39 |
+
self.transform = build_transform(img_size)
|
| 40 |
+
|
| 41 |
+
def run(self, x, return_prob=True):
|
| 42 |
+
"""
|
| 43 |
+
input : Image(PIL or Numpy)
|
| 44 |
+
output : prob or logits
|
| 45 |
+
"""
|
| 46 |
+
# img = Image.open(x).convert("RGB")
|
| 47 |
+
x = self.transform(x).unsqueeze(dim=0)
|
| 48 |
+
ort_inputs = {self.ort_session.get_inputs()[0].name: to_numpy(x)}
|
| 49 |
+
ort_outputs = self.ort_session.run(None, ort_inputs)
|
| 50 |
+
|
| 51 |
+
if return_prob:
|
| 52 |
+
ort_outputs = softmax(ort_outputs)
|
| 53 |
+
|
| 54 |
+
return ort_outputs.squeeze()
|
| 55 |
+
|
| 56 |
+
def to_numpy(tensor):
|
| 57 |
+
return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()
|
| 58 |
+
|
| 59 |
+
def softmax(x):
|
| 60 |
+
max_num = np.max(x)
|
| 61 |
+
exp_a = np.exp(x - max_num) # to prevent OverFlow
|
| 62 |
+
sum_exp_a = np.sum(exp_a)
|
| 63 |
+
y = exp_a / sum_exp_a
|
| 64 |
+
|
| 65 |
+
return y
|
| 66 |
+
|
| 67 |
+
def build_transform(input_size,interpolation="bicubic"):
|
| 68 |
+
return timm.data.create_transform(input_size=input_size, interpolation=interpolation, is_training=False)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
|
deploying model/vit_xsmall_patch16_clip_224(trainble_0.15) (Acc 98.44%, Loss 0.168152).onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c82878b43b74b203e07fe8506c5d7f977ce5559a51893187d1f4efe79f837675
|
| 3 |
+
size 32699557
|