File size: 24,715 Bytes
3e435ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
#!/usr/bin/env python3
"""
LlamaIndex MCP Server for Research Memory and RAG
Provides persistent memory and semantic search capabilities for ALS Research Agent

This server enables the agent to remember all research it encounters, build
knowledge over time, and discover connections between papers.
"""

from mcp.server.fastmcp import FastMCP
import logging
import os
import json
import hashlib
from typing import Optional, List, Dict, Any
from pathlib import Path
import sys
from datetime import datetime
import asyncio

# Add parent directory to path for shared imports
sys.path.insert(0, str(Path(__file__).parent.parent))

from shared import config

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Initialize MCP server
mcp = FastMCP("llamaindex-rag")

# Import LlamaIndex components (will be installed)
try:
    from llama_index.core import (
        VectorStoreIndex,
        Document,
        StorageContext,
        Settings,
        load_index_from_storage
    )
    from llama_index.core.node_parser import SentenceSplitter
    from llama_index.vector_stores.chroma import ChromaVectorStore
    from llama_index.embeddings.huggingface import HuggingFaceEmbedding
    import chromadb
    LLAMAINDEX_AVAILABLE = True
except ImportError:
    LLAMAINDEX_AVAILABLE = False
    logger.warning("LlamaIndex not installed. Install with: pip install llama-index chromadb sentence-transformers")

# Configuration
CHROMA_DB_PATH = os.getenv("CHROMA_DB_PATH", "./chroma_db")
EMBED_MODEL = os.getenv("LLAMAINDEX_EMBED_MODEL", "dmis-lab/biobert-base-cased-v1.2")
CHUNK_SIZE = int(os.getenv("LLAMAINDEX_CHUNK_SIZE", "1024"))
CHUNK_OVERLAP = int(os.getenv("LLAMAINDEX_CHUNK_OVERLAP", "200"))

# Global index storage
research_index = None
chroma_client = None
collection = None
papers_metadata = {}  # Store paper metadata separately


class ResearchMemoryManager:
    """Manages persistent research memory using LlamaIndex and ChromaDB"""

    def __init__(self):
        self.index = None
        self.chroma_client = None
        self.collection = None
        self.metadata_path = Path(CHROMA_DB_PATH) / "metadata.json"

        if LLAMAINDEX_AVAILABLE:
            self._initialize_index()

    def _initialize_index(self):
        """Initialize or load existing index from ChromaDB"""
        try:
            # Create directory if it doesn't exist
            Path(CHROMA_DB_PATH).mkdir(parents=True, exist_ok=True)

            # Initialize ChromaDB client
            self.chroma_client = chromadb.PersistentClient(path=CHROMA_DB_PATH)

            # Get or create collection
            try:
                self.collection = self.chroma_client.get_collection("als_research")
                logger.info(f"Loaded existing ChromaDB collection with {self.collection.count()} papers")
            except:
                self.collection = self.chroma_client.create_collection("als_research")
                logger.info("Created new ChromaDB collection")

            # Initialize embedding model - prefer biomedical models
            try:
                embed_model = HuggingFaceEmbedding(
                    model_name=EMBED_MODEL,
                    cache_folder="./embed_cache"
                )
                logger.info(f"Using embedding model: {EMBED_MODEL}")
            except Exception as e:
                logger.warning(f"Failed to load {EMBED_MODEL}, falling back to default")
                embed_model = HuggingFaceEmbedding(
                    model_name="sentence-transformers/all-MiniLM-L6-v2",
                    cache_folder="./embed_cache"
                )

            # Configure settings
            Settings.embed_model = embed_model
            Settings.chunk_size = CHUNK_SIZE
            Settings.chunk_overlap = CHUNK_OVERLAP

            # Initialize vector store
            vector_store = ChromaVectorStore(chroma_collection=self.collection)
            storage_context = StorageContext.from_defaults(vector_store=vector_store)

            # Create or load index
            if self.collection.count() > 0:
                # Load existing index
                self.index = VectorStoreIndex.from_vector_store(
                    vector_store,
                    storage_context=storage_context
                )
                logger.info("Loaded existing vector index")
            else:
                # Create new index
                self.index = VectorStoreIndex(
                    [],
                    storage_context=storage_context
                )
                logger.info("Created new vector index")

            # Load metadata
            self._load_metadata()

        except Exception as e:
            logger.error(f"Failed to initialize index: {e}")
            self.index = None

    def _load_metadata(self):
        """Load paper metadata from disk"""
        global papers_metadata
        if self.metadata_path.exists():
            try:
                with open(self.metadata_path, 'r') as f:
                    papers_metadata = json.load(f)
                logger.info(f"Loaded metadata for {len(papers_metadata)} papers")
            except Exception as e:
                logger.error(f"Failed to load metadata: {e}")
                papers_metadata = {}
        else:
            papers_metadata = {}

    def _save_metadata(self):
        """Save paper metadata to disk"""
        try:
            with open(self.metadata_path, 'w') as f:
                json.dump(papers_metadata, f, indent=2, default=str)
        except Exception as e:
            logger.error(f"Failed to save metadata: {e}")

    def generate_paper_id(self, title: str, doi: Optional[str] = None) -> str:
        """Generate unique ID for a paper"""
        if doi:
            return hashlib.md5(doi.encode()).hexdigest()
        return hashlib.md5(title.lower().encode()).hexdigest()

    async def index_paper(
        self,
        title: str,
        abstract: str,
        authors: List[str],
        doi: Optional[str] = None,
        journal: Optional[str] = None,
        year: Optional[int] = None,
        findings: Optional[str] = None,
        url: Optional[str] = None,
        paper_type: str = "research"
    ) -> Dict[str, Any]:
        """Index a research paper with metadata"""

        if not self.index:
            return {"status": "error", "message": "Index not initialized"}

        # Generate unique ID
        paper_id = self.generate_paper_id(title, doi)

        # Check if already indexed
        if paper_id in papers_metadata:
            return {
                "status": "already_indexed",
                "paper_id": paper_id,
                "title": title,
                "message": "Paper already in research memory"
            }

        # Prepare document text
        doc_text = f"Title: {title}\n\n"
        doc_text += f"Authors: {', '.join(authors)}\n\n"

        if journal:
            doc_text += f"Journal: {journal}\n"
        if year:
            doc_text += f"Year: {year}\n\n"

        doc_text += f"Abstract: {abstract}\n\n"

        if findings:
            doc_text += f"Key Findings: {findings}\n\n"

        # Create document with metadata (ChromaDB only accepts strings, not lists)
        metadata = {
            "paper_id": paper_id,
            "title": title,
            "authors": ", ".join(authors) if authors else "",  # Convert list to string
            "doi": doi,
            "journal": journal,
            "year": year,
            "url": url,
            "paper_type": paper_type,
            "indexed_at": datetime.now().isoformat()
        }

        document = Document(
            text=doc_text,
            metadata=metadata
        )

        try:
            # Add to index
            self.index.insert(document)

            # Store metadata
            papers_metadata[paper_id] = metadata
            self._save_metadata()

            logger.info(f"Indexed paper: {title}")

            return {
                "status": "success",
                "paper_id": paper_id,
                "title": title,
                "message": f"Successfully indexed paper into research memory"
            }

        except Exception as e:
            logger.error(f"Failed to index paper: {e}")
            return {
                "status": "error",
                "message": f"Failed to index paper: {str(e)}"
            }

    async def search_similar(
        self,
        query: str,
        top_k: int = 5,
        include_scores: bool = True
    ) -> List[Dict[str, Any]]:
        """Search for similar research in memory"""

        if not self.index:
            return []

        try:
            # Use retriever for direct vector search (no LLM needed)
            retriever = self.index.as_retriever(
                similarity_top_k=top_k
            )

            # Search using retriever
            nodes = retriever.retrieve(query)

            results = []
            for node in nodes:
                result = {
                    "text": node.text[:500] + "..." if len(node.text) > 500 else node.text,
                    "metadata": node.metadata,
                    "score": node.score if include_scores else None
                }
                results.append(result)

            return results

        except Exception as e:
            logger.error(f"Search failed: {e}")
            return []


# Global manager - will be initialized on first use
memory_manager = None
_initialization_lock = asyncio.Lock()  # Prevent race conditions during initialization
_initialization_started = False


async def ensure_initialized():
    """Ensure the memory manager is initialized (lazy initialization)."""
    global memory_manager, _initialization_started

    # Quick check without lock
    if memory_manager is not None:
        return True

    # Thread-safe initialization
    async with _initialization_lock:
        # Double-check after acquiring lock
        if memory_manager is not None:
            return True

        if not LLAMAINDEX_AVAILABLE:
            return False

        if _initialization_started:
            # Another thread is initializing, wait for it
            while memory_manager is None and _initialization_started:
                await asyncio.sleep(0.1)
            return memory_manager is not None

        try:
            _initialization_started = True
            logger.info("🔄 Initializing LlamaIndex RAG system (this may take 20-30 seconds)...")
            logger.info("  Loading BioBERT embedding model...")

            # Initialize the memory manager
            memory_manager = ResearchMemoryManager()

            logger.info("✅ LlamaIndex RAG system initialized successfully")
            return True

        except Exception as e:
            logger.error(f"❌ Failed to initialize LlamaIndex: {e}")
            _initialization_started = False
            return False


@mcp.tool()
async def index_paper(
    title: str,
    abstract: str,
    authors: str,
    doi: Optional[str] = None,
    journal: Optional[str] = None,
    year: Optional[int] = None,
    findings: Optional[str] = None,
    url: Optional[str] = None
) -> str:
    """Index a research paper into persistent memory for future retrieval.

    The agent's research memory persists across sessions, building knowledge over time.

    Args:
        title: Paper title
        abstract: Paper abstract or summary
        authors: Comma-separated list of authors
        doi: Digital Object Identifier (optional)
        journal: Journal or preprint server name (optional)
        year: Publication year (optional)
        findings: Key findings or implications (optional)
        url: URL to paper (optional)

    Returns:
        Status of indexing operation
    """

    if not LLAMAINDEX_AVAILABLE:
        return json.dumps({
            "status": "error",
            "error": "LlamaIndex not installed",
            "message": "Install with: pip install llama-index chromadb sentence-transformers"
        }, indent=2)

    # Lazy initialization on first use
    if not await ensure_initialized():
        return json.dumps({
            "status": "error",
            "error": "Memory manager initialization failed",
            "message": "Check LlamaIndex configuration and dependencies"
        }, indent=2)

    try:
        # Parse authors
        authors_list = [a.strip() for a in authors.split(",")]

        result = await memory_manager.index_paper(
            title=title,
            abstract=abstract,
            authors=authors_list,
            doi=doi,
            journal=journal,
            year=year,
            findings=findings,
            url=url
        )

        if result["status"] == "success":
            return json.dumps({
                "status": "success",
                "paper_id": result["paper_id"],
                "title": result["title"],
                "message": f"✅ Indexed into research memory. Total papers: {len(papers_metadata)}",
                "total_papers_indexed": len(papers_metadata)
            }, indent=2)

        elif result["status"] == "already_indexed":
            return json.dumps({
                "status": "already_indexed",
                "paper_id": result["paper_id"],
                "title": result["title"],
                "message": "ℹ️ Paper already in research memory",
                "total_papers_indexed": len(papers_metadata)
            }, indent=2)

        else:
            return json.dumps({"status": "error", "error": "Indexing failed", "message": result.get("message", "Unknown error")}, indent=2)

    except Exception as e:
        logger.error(f"Error indexing paper: {e}")
        return json.dumps({"status": "error", "error": "Indexing error", "message": str(e)}, indent=2)


@mcp.tool()
async def semantic_search(
    query: str,
    max_results: int = 5
) -> str:
    """Search research memory using semantic similarity.

    Finds papers similar to your query across all indexed research,
    even if they don't contain exact keywords.

    Args:
        query: Search query (can be a question, topic, or paper abstract)
        max_results: Maximum number of results to return (default: 5)

    Returns:
        Similar papers from research memory
    """

    if not LLAMAINDEX_AVAILABLE:
        return json.dumps({
            "status": "error",
            "error": "LlamaIndex not installed",
            "message": "Install with: pip install llama-index chromadb sentence-transformers"
        }, indent=2)

    # Lazy initialization on first use
    if not await ensure_initialized():
        return json.dumps({
            "status": "error",
            "error": "Memory manager initialization failed",
            "message": "Check LlamaIndex configuration and dependencies"
        }, indent=2)

    if not memory_manager.index:
        return json.dumps({
            "status": "error",
            "error": "No research memory available",
            "message": "No papers have been indexed yet"
        }, indent=2)

    try:
        results = await memory_manager.search_similar(
            query=query,
            top_k=max_results
        )

        if not results:
            return json.dumps({
                "status": "no_results",
                "query": query,
                "message": "No similar research found in memory"
            }, indent=2)

        # Format results
        formatted_results = []
        for i, result in enumerate(results, 1):
            metadata = result["metadata"]
            formatted_results.append({
                "rank": i,
                "title": metadata.get("title", "Unknown"),
                "authors": metadata.get("authors", []),
                "year": metadata.get("year"),
                "journal": metadata.get("journal"),
                "doi": metadata.get("doi"),
                "url": metadata.get("url"),
                "similarity_score": round(result["score"], 3) if result["score"] else None,
                "excerpt": result["text"][:300] + "..."
            })

        return json.dumps({
            "status": "success",
            "query": query,
            "num_results": len(formatted_results),
            "results": formatted_results,
            "message": f"Found {len(formatted_results)} similar papers in research memory"
        }, indent=2)

    except Exception as e:
        logger.error(f"Search error: {e}")
        return json.dumps({"status": "error", "error": "Search failed", "message": str(e)}, indent=2)


@mcp.tool()
async def get_research_connections(
    paper_title: str,
    connection_type: str = "similar",
    max_connections: int = 5
) -> str:
    """Discover connections between research papers in memory.

    Finds related papers that might share themes, methods, or findings.

    Args:
        paper_title: Title of paper to find connections for
        connection_type: Type of connections - "similar", "citations", "authors"
        max_connections: Maximum connections to return

    Returns:
        Connected papers with relationship descriptions
    """

    if not LLAMAINDEX_AVAILABLE:
        return json.dumps({
            "status": "error",
            "error": "LlamaIndex not installed",
            "message": "Install with: pip install llama-index chromadb sentence-transformers"
        }, indent=2)

    # Lazy initialization on first use
    if not await ensure_initialized():
        return json.dumps({
            "status": "error",
            "error": "Memory manager initialization failed",
            "message": "Check LlamaIndex configuration and dependencies"
        }, indent=2)

    try:
        # For now, we'll use similarity search
        # Future: implement citation networks, co-authorship graphs

        if connection_type == "similar":
            # Search for papers similar to this title
            results = await memory_manager.search_similar(
                query=paper_title,
                top_k=max_connections + 1  # +1 because it might include itself
            )

            # Filter out the paper itself
            filtered_results = []
            for result in results:
                if result["metadata"].get("title", "").lower() != paper_title.lower():
                    filtered_results.append(result)

            if not filtered_results:
                return json.dumps({
                    "status": "no_connections",
                    "paper": paper_title,
                    "message": "No connections found in research memory"
                }, indent=2)

            connections = []
            for result in filtered_results[:max_connections]:
                metadata = result["metadata"]
                connections.append({
                    "title": metadata.get("title", "Unknown"),
                    "authors": metadata.get("authors", []),
                    "year": metadata.get("year"),
                    "connection_strength": round(result["score"], 3) if result["score"] else None,
                    "connection_type": "semantic_similarity",
                    "url": metadata.get("url")
                })

            return json.dumps({
                "status": "success",
                "paper": paper_title,
                "connection_type": connection_type,
                "num_connections": len(connections),
                "connections": connections,
                "message": f"Found {len(connections)} connected papers"
            }, indent=2)

        else:
            return json.dumps({
                "status": "not_implemented",
                "message": f"Connection type '{connection_type}' not yet implemented. Use 'similar' for now."
            }, indent=2)

    except Exception as e:
        logger.error(f"Error finding connections: {e}")
        return json.dumps({"status": "error", "error": "Connection search failed", "message": str(e)}, indent=2)


@mcp.tool()
async def list_indexed_papers(
    limit: int = 20,
    sort_by: str = "date"
) -> str:
    """List papers currently in research memory.

    Shows what research the agent has learned from previously.

    Args:
        limit: Maximum papers to list (default: 20)
        sort_by: Sort order - "date" (indexed date) or "year" (publication year)

    Returns:
        List of indexed papers with metadata
    """

    if not papers_metadata:
        return json.dumps({
            "status": "empty",
            "message": "No papers indexed yet. Research memory is empty.",
            "total_papers": 0
        }, indent=2)

    try:
        # Get papers list
        papers_list = []
        for paper_id, metadata in papers_metadata.items():
            # Convert authors string back to list
            authors_str = metadata.get("authors", "")
            authors_list = authors_str.split(", ") if authors_str else []

            papers_list.append({
                "paper_id": paper_id,
                "title": metadata.get("title", "Unknown"),
                "authors": authors_list,
                "year": metadata.get("year"),
                "journal": metadata.get("journal"),
                "doi": metadata.get("doi"),
                "indexed_at": metadata.get("indexed_at"),
                "url": metadata.get("url")
            })

        # Sort
        if sort_by == "date":
            papers_list.sort(key=lambda x: x.get("indexed_at", ""), reverse=True)
        elif sort_by == "year":
            papers_list.sort(key=lambda x: x.get("year", 0), reverse=True)

        # Limit
        papers_list = papers_list[:limit]

        return json.dumps({
            "status": "success",
            "total_papers": len(papers_metadata),
            "showing": len(papers_list),
            "sort_by": sort_by,
            "papers": papers_list,
            "message": f"Research memory contains {len(papers_metadata)} papers"
        }, indent=2)

    except Exception as e:
        logger.error(f"Error listing papers: {e}")
        return json.dumps({"status": "error", "error": "Failed to list papers", "message": str(e)}, indent=2)


@mcp.tool()
async def clear_research_memory(
    confirm: bool = False
) -> str:
    """Clear all papers from research memory.

    ⚠️ This will permanently delete all indexed research!

    Args:
        confirm: Must be True to actually clear memory

    Returns:
        Confirmation of memory clearing
    """
    global papers_metadata

    if not confirm:
        return json.dumps({
            "status": "confirmation_required",
            "message": "⚠️ This will delete all research memory. Set confirm=True to proceed.",
            "current_papers": len(papers_metadata)
        }, indent=2)

    try:
        # Check if memory manager needs initialization
        # Only initialize if we have papers to clear
        if papers_metadata and not memory_manager:
            await ensure_initialized()

        # Clear ChromaDB collection
        if memory_manager and memory_manager.collection:
            # Delete and recreate collection
            memory_manager.chroma_client.delete_collection("als_research")
            memory_manager.collection = memory_manager.chroma_client.create_collection("als_research")

            # Reinitialize index
            memory_manager._initialize_index()

        # Clear metadata
        num_papers = len(papers_metadata)
        papers_metadata = {}

        # Save empty metadata
        if memory_manager:
            memory_manager._save_metadata()

        logger.info(f"Cleared research memory: {num_papers} papers removed")

        return json.dumps({
            "status": "success",
            "message": f"✅ Research memory cleared. Removed {num_papers} papers.",
            "papers_removed": num_papers
        }, indent=2)

    except Exception as e:
        logger.error(f"Error clearing memory: {e}")
        return json.dumps({"status": "error", "error": "Failed to clear memory", "message": str(e)}, indent=2)


if __name__ == "__main__":
    # Check for required packages
    if not LLAMAINDEX_AVAILABLE:
        logger.error("LlamaIndex dependencies not installed!")
        logger.info("Install with: pip install llama-index-core llama-index-vector-stores-chroma")
        logger.info("              pip install chromadb sentence-transformers transformers")
    else:
        logger.info(f"LlamaIndex RAG server starting...")
        logger.info(f"ChromaDB path: {CHROMA_DB_PATH}")
        logger.info(f"Embedding model: {EMBED_MODEL}")
        logger.info(f"Papers in memory: {len(papers_metadata)}")

    # Run the MCP server
    mcp.run(transport="stdio")