Spaces:
Running
Running
File size: 9,439 Bytes
3e435ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
# pubmed_server.py
from mcp.server.fastmcp import FastMCP
import httpx
import logging
import sys
from pathlib import Path
# Add parent directory to path for shared imports
sys.path.insert(0, str(Path(__file__).parent.parent))
from shared import (
config,
RateLimiter,
format_authors,
ErrorFormatter,
truncate_text
)
from shared.http_client import get_http_client
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Create FastMCP server
mcp = FastMCP("pubmed-server")
# Rate limiting using shared utility
rate_limiter = RateLimiter(config.rate_limits.pubmed_delay)
@mcp.tool()
async def search_pubmed(
query: str,
max_results: int = 10,
sort: str = "relevance"
) -> str:
"""Search PubMed for ALS research papers. Returns titles, abstracts, PMIDs, and publication dates.
Args:
query: Search query (e.g., 'ALS SOD1 therapy')
max_results: Maximum number of results (default: 10)
sort: Sort order - 'relevance' or 'date' (default: 'relevance')
"""
try:
logger.info(f"Searching PubMed for: {query}")
# PubMed E-utilities API (no auth required)
base_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils"
# Rate limiting
await rate_limiter.wait()
# Step 1: Search for PMIDs
search_params = {
"db": "pubmed",
"term": query,
"retmax": max_results,
"retmode": "json",
"sort": sort
}
# Use shared HTTP client for connection pooling
client = get_http_client(timeout=config.api.timeout)
# Get PMIDs
search_resp = await client.get(f"{base_url}/esearch.fcgi", params=search_params)
search_resp.raise_for_status()
search_data = search_resp.json()
pmids = search_data.get("esearchresult", {}).get("idlist", [])
if not pmids:
logger.info(f"No results found for query: {query}")
return ErrorFormatter.no_results(query)
# Rate limiting
await rate_limiter.wait()
# Step 2: Fetch details for PMIDs
fetch_params = {
"db": "pubmed",
"id": ",".join(pmids),
"retmode": "xml"
}
fetch_resp = await client.get(f"{base_url}/efetch.fcgi", params=fetch_params)
fetch_resp.raise_for_status()
# Parse XML and extract key info
papers = parse_pubmed_xml(fetch_resp.text)
result = f"Found {len(papers)} papers for query: '{query}'\n\n"
for i, paper in enumerate(papers, 1):
result += f"{i}. **{paper['title']}**\n"
result += f" PMID: {paper['pmid']} | Published: {paper['date']}\n"
result += f" Authors: {paper['authors']}\n"
result += f" URL: https://pubmed.ncbi.nlm.nih.gov/{paper['pmid']}/\n"
result += f" Abstract: {truncate_text(paper['abstract'], max_chars=300, suffix='')}...\n\n"
logger.info(f"Successfully retrieved {len(papers)} papers")
return result
except httpx.TimeoutException:
logger.error("PubMed API request timed out")
return "Error: PubMed API request timed out. Please try again."
except httpx.HTTPStatusError as e:
logger.error(f"PubMed API error: {e}")
return f"Error: PubMed API returned status {e.response.status_code}"
except Exception as e:
logger.error(f"Unexpected error in search_pubmed: {e}")
return f"Error: {str(e)}"
@mcp.tool()
async def get_paper_details(pmid: str) -> str:
"""Get full details for a specific PubMed paper by PMID.
Args:
pmid: PubMed ID
"""
try:
logger.info(f"Fetching details for PMID: {pmid}")
base_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils"
# Rate limiting
await rate_limiter.wait()
fetch_params = {
"db": "pubmed",
"id": pmid,
"retmode": "xml"
}
# Use shared HTTP client for connection pooling
client = get_http_client(timeout=config.api.timeout)
fetch_resp = await client.get(f"{base_url}/efetch.fcgi", params=fetch_params)
fetch_resp.raise_for_status()
papers = parse_pubmed_xml(fetch_resp.text)
if not papers:
return ErrorFormatter.not_found("paper", pmid)
paper = papers[0]
# Format detailed response
result = f"**{paper['title']}**\n\n"
result += f"**PMID:** {paper['pmid']}\n"
result += f"**Published:** {paper['date']}\n"
result += f"**Authors:** {paper['authors']}\n\n"
result += f"**Abstract:**\n{paper['abstract']}\n\n"
result += f"**Journal:** {paper.get('journal', 'N/A')}\n"
result += f"**DOI:** {paper.get('doi', 'N/A')}\n"
result += f"**PubMed URL:** https://pubmed.ncbi.nlm.nih.gov/{pmid}/\n"
logger.info(f"Successfully retrieved details for PMID: {pmid}")
return result
except httpx.TimeoutException:
logger.error("PubMed API request timed out")
return "Error: PubMed API request timed out. Please try again."
except httpx.HTTPStatusError as e:
logger.error(f"PubMed API error: {e}")
return f"Error: PubMed API returned status {e.response.status_code}"
except Exception as e:
logger.error(f"Unexpected error in get_paper_details: {e}")
return f"Error: {str(e)}"
def parse_pubmed_xml(xml_text: str) -> list[dict]:
"""Parse PubMed XML response into structured data with error handling"""
import xml.etree.ElementTree as ET
papers = []
try:
root = ET.fromstring(xml_text)
except ET.ParseError as e:
logger.error(f"XML parsing error: {e}")
return papers
for article in root.findall(".//PubmedArticle"):
try:
# Extract title
title_elem = article.find(".//ArticleTitle")
title = "".join(title_elem.itertext()) if title_elem is not None else "No title"
# Extract abstract (may have multiple AbstractText elements)
abstract_parts = []
for abstract_elem in article.findall(".//AbstractText"):
if abstract_elem is not None and abstract_elem.text:
label = abstract_elem.get("Label", "")
text = "".join(abstract_elem.itertext())
if label:
abstract_parts.append(f"{label}: {text}")
else:
abstract_parts.append(text)
abstract = " ".join(abstract_parts) if abstract_parts else "No abstract available"
# Extract PMID
pmid_elem = article.find(".//PMID")
pmid = pmid_elem.text if pmid_elem is not None else "Unknown"
# Extract date - correct path in MedlineCitation
pub_date = article.find(".//MedlineCitation/Article/Journal/JournalIssue/PubDate")
if pub_date is not None:
year_elem = pub_date.find("Year")
month_elem = pub_date.find("Month")
year = year_elem.text if year_elem is not None else "Unknown"
month = month_elem.text if month_elem is not None else ""
date_str = f"{month} {year}" if month else year
else:
# Try alternative date location
date_completed = article.find(".//DateCompleted")
if date_completed is not None:
year_elem = date_completed.find("Year")
year = year_elem.text if year_elem is not None else "Unknown"
date_str = year
else:
date_str = "Unknown"
# Extract authors
authors = []
for author in article.findall(".//Author"):
last = author.find("LastName")
first = author.find("ForeName")
collective = author.find("CollectiveName")
if collective is not None and collective.text:
authors.append(collective.text)
elif last is not None and first is not None:
authors.append(f"{first.text} {last.text}")
elif last is not None:
authors.append(last.text)
# Format authors using shared utility
authors_str = format_authors("; ".join(authors), max_authors=3) if authors else "Unknown authors"
# Extract journal name
journal_elem = article.find(".//Journal/Title")
journal = journal_elem.text if journal_elem is not None else "Unknown"
# Extract DOI
doi = None
for article_id in article.findall(".//ArticleId"):
if article_id.get("IdType") == "doi":
doi = article_id.text
break
papers.append({
"title": title,
"abstract": abstract,
"pmid": pmid,
"date": date_str,
"authors": authors_str,
"journal": journal,
"doi": doi or "N/A"
})
except Exception as e:
logger.warning(f"Error parsing article: {e}")
continue
return papers
if __name__ == "__main__":
# Run with stdio transport
mcp.run(transport="stdio")
|