Spaces:
Running
Running
File size: 15,883 Bytes
3e435ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
#!/usr/bin/env python3
"""
Smart Cache System for ALS Research Agent
Features:
- Query normalization to match similar queries
- Cache pre-warming with common queries
- High-frequency question optimization
"""
import json
import hashlib
import re
from typing import Dict, List, Optional, Tuple, Any
from datetime import datetime, timedelta
import asyncio
import logging
logger = logging.getLogger(__name__)
class SmartCache:
"""Advanced caching system with query normalization and pre-warming"""
def __init__(self, cache_dir: str = ".cache", ttl_hours: int = 24):
"""
Initialize smart cache system.
Args:
cache_dir: Directory for cache storage
ttl_hours: Time-to-live for cached entries in hours
"""
self.cache_dir = cache_dir
self.ttl = timedelta(hours=ttl_hours)
self.cache = {} # In-memory cache
self.normalized_cache = {} # Maps normalized queries to original cache keys
self.high_frequency_queries = {} # User-specified common queries
self.query_stats = {} # Track query frequency
# Ensure cache directory exists
import os
os.makedirs(cache_dir, exist_ok=True)
# Load persistent cache on init
self.load_cache()
def normalize_query(self, query: str) -> str:
"""
Normalize query for better cache matching.
Handles variations like:
- "ALS gene therapy" vs "gene therapy ALS"
- "What are the latest trials" vs "what are latest trials"
- Different word orders, case, punctuation
"""
# Convert to lowercase
normalized = query.lower().strip()
# Remove common question words that don't affect meaning
question_words = [
'what', 'how', 'when', 'where', 'why', 'who', 'which',
'are', 'is', 'the', 'a', 'an', 'there', 'can', 'could',
'would', 'should', 'do', 'does', 'did', 'have', 'has', 'had'
]
# Remove punctuation
normalized = re.sub(r'[^\w\s]', ' ', normalized)
# Split into words and remove question words
words = normalized.split()
content_words = [w for w in words if w not in question_words]
# Sort words alphabetically for consistent ordering
# This makes "ALS gene therapy" match "gene therapy ALS"
content_words.sort()
# Join back together
normalized = ' '.join(content_words)
# Remove extra whitespace
normalized = ' '.join(normalized.split())
return normalized
def generate_cache_key(self, query: str, include_normalization: bool = True) -> str:
"""
Generate a cache key for a query.
Args:
query: The original query
include_normalization: Whether to also store normalized version
Returns:
Hash-based cache key
"""
# Generate hash of original query
original_hash = hashlib.sha256(query.encode()).hexdigest()[:16]
if include_normalization:
# Also store mapping from normalized query to this cache key
normalized = self.normalize_query(query)
normalized_hash = hashlib.sha256(normalized.encode()).hexdigest()[:16]
# Store mapping for future lookups
if normalized_hash not in self.normalized_cache:
self.normalized_cache[normalized_hash] = []
if original_hash not in self.normalized_cache[normalized_hash]:
self.normalized_cache[normalized_hash].append(original_hash)
return original_hash
def find_similar_cached(self, query: str) -> Optional[Dict[str, Any]]:
"""
Find cached results for similar queries.
Args:
query: The query to search for
Returns:
Cached result if found, None otherwise
"""
# First try exact match
exact_key = self.generate_cache_key(query, include_normalization=False)
if exact_key in self.cache:
entry = self.cache[exact_key]
if self._is_valid(entry):
logger.info(f"Cache hit (exact): {query[:50]}...")
self._update_stats(query)
return entry['result']
# Try normalized match
normalized = self.normalize_query(query)
normalized_key = hashlib.sha256(normalized.encode()).hexdigest()[:16]
if normalized_key in self.normalized_cache:
# Check all original queries that normalize to this
for original_key in self.normalized_cache[normalized_key]:
if original_key in self.cache:
entry = self.cache[original_key]
if self._is_valid(entry):
logger.info(f"Cache hit (normalized): {query[:50]}...")
self._update_stats(query)
return entry['result']
logger.info(f"Cache miss: {query[:50]}...")
return None
def store(self, query: str, result: Any, metadata: Optional[Dict] = None):
"""
Store a query result in cache.
Args:
query: The original query
result: The result to cache
metadata: Optional metadata about the result
"""
cache_key = self.generate_cache_key(query, include_normalization=True)
entry = {
'query': query,
'result': result,
'timestamp': datetime.now().isoformat(),
'metadata': metadata or {},
'access_count': 0
}
self.cache[cache_key] = entry
self._update_stats(query)
# Persist to disk asynchronously (non-blocking)
asyncio.create_task(self._save_cache_async())
logger.info(f"Cached result for: {query[:50]}...")
def _is_valid(self, entry: Dict) -> bool:
"""Check if a cache entry is still valid (not expired)"""
try:
timestamp = datetime.fromisoformat(entry['timestamp'])
age = datetime.now() - timestamp
return age < self.ttl
except:
return False
def _update_stats(self, query: str):
"""Update query frequency statistics"""
normalized = self.normalize_query(query)
if normalized not in self.query_stats:
self.query_stats[normalized] = {'count': 0, 'last_access': None}
self.query_stats[normalized]['count'] += 1
self.query_stats[normalized]['last_access'] = datetime.now().isoformat()
async def pre_warm_cache(self, queries: List[Dict[str, Any]],
search_func=None, llm_func=None):
"""
Pre-warm cache with common queries.
Args:
queries: List of dicts with 'query', 'search_terms', 'use_claude' keys
search_func: Async function to perform searches
llm_func: Async function to call Claude for high-priority queries
"""
logger.info(f"Pre-warming cache with {len(queries)} queries...")
for query_config in queries:
query = query_config['query']
# Check if already cached
if self.find_similar_cached(query):
logger.info(f"Already cached: {query}")
continue
try:
# Use optimized search terms if provided
search_terms = query_config.get('search_terms', query)
use_claude = query_config.get('use_claude', False)
if search_func:
# Perform search with optimized terms
logger.info(f"Pre-warming: {query}")
if use_claude and llm_func:
# Use Claude for high-priority queries
result = await llm_func(search_terms)
else:
# Use standard search
result = await search_func(search_terms)
# Cache the result
self.store(query, result, {
'pre_warmed': True,
'optimized_terms': search_terms,
'used_claude': use_claude
})
# Small delay to avoid overwhelming APIs
await asyncio.sleep(1)
except Exception as e:
logger.error(f"Failed to pre-warm cache for '{query}': {e}")
def add_high_frequency_query(self, query: str, config: Dict[str, Any]):
"""
Add a high-frequency query configuration.
Args:
query: The query pattern
config: Configuration dict with search_terms, use_claude, etc.
"""
normalized = self.normalize_query(query)
self.high_frequency_queries[normalized] = {
'original': query,
'config': config,
'added': datetime.now().isoformat()
}
logger.info(f"Added high-frequency query: {query}")
def get_high_frequency_config(self, query: str) -> Optional[Dict[str, Any]]:
"""
Get configuration for a high-frequency query if it matches.
Args:
query: The query to check
Returns:
Configuration dict if this is a high-frequency query
"""
normalized = self.normalize_query(query)
if normalized in self.high_frequency_queries:
return self.high_frequency_queries[normalized]['config']
return None
def get_cache_stats(self) -> Dict[str, Any]:
"""Get cache statistics"""
valid_entries = sum(1 for entry in self.cache.values() if self._is_valid(entry))
total_entries = len(self.cache)
# Get top queries
top_queries = sorted(
self.query_stats.items(),
key=lambda x: x[1]['count'],
reverse=True
)[:10]
return {
'total_entries': total_entries,
'valid_entries': valid_entries,
'expired_entries': total_entries - valid_entries,
'normalized_groups': len(self.normalized_cache),
'high_frequency_queries': len(self.high_frequency_queries),
'top_queries': [
{'query': q, 'count': stats['count']}
for q, stats in top_queries
]
}
def clear_expired(self):
"""Remove expired entries from cache"""
expired_keys = [
key for key, entry in self.cache.items()
if not self._is_valid(entry)
]
for key in expired_keys:
del self.cache[key]
if expired_keys:
logger.info(f"Cleared {len(expired_keys)} expired cache entries")
self.save_cache()
def save_cache(self):
"""Persist cache to disk"""
cache_file = f"{self.cache_dir}/smart_cache.json"
try:
with open(cache_file, 'w') as f:
json.dump({
'cache': self.cache,
'normalized_cache': self.normalized_cache,
'high_frequency_queries': self.high_frequency_queries,
'query_stats': self.query_stats
}, f, indent=2)
logger.debug(f"Cache saved to {cache_file}")
except Exception as e:
logger.error(f"Failed to save cache: {e}")
async def _save_cache_async(self):
"""Async version of save_cache that doesn't block"""
try:
await asyncio.to_thread(self.save_cache)
except Exception as e:
logger.error(f"Failed to save cache asynchronously: {e}")
def load_cache(self):
"""Load cache from disk"""
cache_file = f"{self.cache_dir}/smart_cache.json"
try:
with open(cache_file, 'r') as f:
data = json.load(f)
self.cache = data.get('cache', {})
self.normalized_cache = data.get('normalized_cache', {})
self.high_frequency_queries = data.get('high_frequency_queries', {})
self.query_stats = data.get('query_stats', {})
# Clear expired entries on load
self.clear_expired()
logger.info(f"Loaded cache with {len(self.cache)} entries")
except FileNotFoundError:
logger.info("No existing cache file found")
except Exception as e:
logger.error(f"Failed to load cache: {e}")
# Configuration for common ALS queries to pre-warm
DEFAULT_PREWARM_QUERIES = [
{
'query': 'What are the latest ALS treatments?',
'search_terms': 'ALS treatment therapy 2024 riluzole edaravone',
'use_claude': True # High-frequency, use Claude for best results
},
{
'query': 'Gene therapy for ALS',
'search_terms': 'ALS gene therapy SOD1 C9orf72 clinical trial',
'use_claude': True
},
{
'query': 'ALS clinical trials',
'search_terms': 'ALS clinical trials recruiting phase 2 phase 3',
'use_claude': False
},
{
'query': 'What causes ALS?',
'search_terms': 'ALS etiology pathogenesis genetic environmental factors',
'use_claude': True
},
{
'query': 'ALS symptoms and diagnosis',
'search_terms': 'ALS symptoms diagnosis EMG criteria El Escorial',
'use_claude': False
},
{
'query': 'Stem cell therapy for ALS',
'search_terms': 'ALS stem cell therapy mesenchymal clinical trial',
'use_claude': False
},
{
'query': 'ALS prognosis and life expectancy',
'search_terms': 'ALS prognosis survival life expectancy factors',
'use_claude': True
},
{
'query': 'New ALS drugs',
'search_terms': 'ALS new drugs FDA approved pipeline 2024',
'use_claude': False
},
{
'query': 'ALS biomarkers',
'search_terms': 'ALS biomarkers neurofilament TDP-43 diagnostic prognostic',
'use_claude': False
},
{
'query': 'Is there a cure for ALS?',
'search_terms': 'ALS cure breakthrough research treatment advances',
'use_claude': True
}
]
def test_smart_cache():
"""Test the smart cache functionality"""
print("Testing Smart Cache System")
print("=" * 60)
cache = SmartCache()
# Test query normalization
test_queries = [
("What are the latest ALS gene therapy trials?", "ALS gene therapy trials"),
("gene therapy ALS", "ALS gene therapy"),
("What is ALS?", "ALS"),
("HOW does riluzole work for ALS?", "ALS riluzole work"),
]
print("\n1. Query Normalization Tests:")
for original, expected_words in test_queries:
normalized = cache.normalize_query(original)
print(f" Original: {original}")
print(f" Normalized: {normalized}")
print(f" Expected words present: {all(w in normalized for w in expected_words.lower().split())}")
print()
# Test similar query matching
print("\n2. Similar Query Matching:")
cache.store("What are the latest ALS treatments?", {"result": "Treatment data"})
similar_queries = [
"latest ALS treatments",
"ALS latest treatments",
"What are latest treatments for ALS?",
"treatments ALS latest"
]
for query in similar_queries:
result = cache.find_similar_cached(query)
print(f" Query: {query}")
print(f" Found: {result is not None}")
# Test cache statistics
print("\n3. Cache Statistics:")
stats = cache.get_cache_stats()
print(f" Total entries: {stats['total_entries']}")
print(f" Valid entries: {stats['valid_entries']}")
print(f" Normalized groups: {stats['normalized_groups']}")
print("\n✅ Smart cache tests completed!")
if __name__ == "__main__":
test_smart_cache() |