#!/usr/bin/env python3 """ LlamaIndex MCP Server for Research Memory and RAG Provides persistent memory and semantic search capabilities for ALS Research Agent This server enables the agent to remember all research it encounters, build knowledge over time, and discover connections between papers. """ from mcp.server.fastmcp import FastMCP import logging import os import json import hashlib from typing import Optional, List, Dict, Any from pathlib import Path import sys from datetime import datetime import asyncio # Add parent directory to path for shared imports sys.path.insert(0, str(Path(__file__).parent.parent)) from shared import config # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Initialize MCP server mcp = FastMCP("llamaindex-rag") # Import LlamaIndex components (will be installed) try: from llama_index.core import ( VectorStoreIndex, Document, StorageContext, Settings, load_index_from_storage ) from llama_index.core.node_parser import SentenceSplitter from llama_index.vector_stores.chroma import ChromaVectorStore from llama_index.embeddings.huggingface import HuggingFaceEmbedding import chromadb LLAMAINDEX_AVAILABLE = True except ImportError: LLAMAINDEX_AVAILABLE = False logger.warning("LlamaIndex not installed. Install with: pip install llama-index chromadb sentence-transformers") # Configuration CHROMA_DB_PATH = os.getenv("CHROMA_DB_PATH", "./chroma_db") EMBED_MODEL = os.getenv("LLAMAINDEX_EMBED_MODEL", "dmis-lab/biobert-base-cased-v1.2") CHUNK_SIZE = int(os.getenv("LLAMAINDEX_CHUNK_SIZE", "1024")) CHUNK_OVERLAP = int(os.getenv("LLAMAINDEX_CHUNK_OVERLAP", "200")) # Global index storage research_index = None chroma_client = None collection = None papers_metadata = {} # Store paper metadata separately class ResearchMemoryManager: """Manages persistent research memory using LlamaIndex and ChromaDB""" def __init__(self): self.index = None self.chroma_client = None self.collection = None self.metadata_path = Path(CHROMA_DB_PATH) / "metadata.json" if LLAMAINDEX_AVAILABLE: self._initialize_index() def _initialize_index(self): """Initialize or load existing index from ChromaDB""" try: # Create directory if it doesn't exist Path(CHROMA_DB_PATH).mkdir(parents=True, exist_ok=True) # Initialize ChromaDB client self.chroma_client = chromadb.PersistentClient(path=CHROMA_DB_PATH) # Get or create collection try: self.collection = self.chroma_client.get_collection("als_research") logger.info(f"Loaded existing ChromaDB collection with {self.collection.count()} papers") except: self.collection = self.chroma_client.create_collection("als_research") logger.info("Created new ChromaDB collection") # Initialize embedding model - prefer biomedical models try: embed_model = HuggingFaceEmbedding( model_name=EMBED_MODEL, cache_folder="./embed_cache" ) logger.info(f"Using embedding model: {EMBED_MODEL}") except Exception as e: logger.warning(f"Failed to load {EMBED_MODEL}, falling back to default") embed_model = HuggingFaceEmbedding( model_name="sentence-transformers/all-MiniLM-L6-v2", cache_folder="./embed_cache" ) # Configure settings Settings.embed_model = embed_model Settings.chunk_size = CHUNK_SIZE Settings.chunk_overlap = CHUNK_OVERLAP # Initialize vector store vector_store = ChromaVectorStore(chroma_collection=self.collection) storage_context = StorageContext.from_defaults(vector_store=vector_store) # Create or load index if self.collection.count() > 0: # Load existing index self.index = VectorStoreIndex.from_vector_store( vector_store, storage_context=storage_context ) logger.info("Loaded existing vector index") else: # Create new index self.index = VectorStoreIndex( [], storage_context=storage_context ) logger.info("Created new vector index") # Load metadata self._load_metadata() except Exception as e: logger.error(f"Failed to initialize index: {e}") self.index = None def _load_metadata(self): """Load paper metadata from disk""" global papers_metadata if self.metadata_path.exists(): try: with open(self.metadata_path, 'r') as f: papers_metadata = json.load(f) logger.info(f"Loaded metadata for {len(papers_metadata)} papers") except Exception as e: logger.error(f"Failed to load metadata: {e}") papers_metadata = {} else: papers_metadata = {} def _save_metadata(self): """Save paper metadata to disk""" try: with open(self.metadata_path, 'w') as f: json.dump(papers_metadata, f, indent=2, default=str) except Exception as e: logger.error(f"Failed to save metadata: {e}") def generate_paper_id(self, title: str, doi: Optional[str] = None) -> str: """Generate unique ID for a paper""" if doi: return hashlib.md5(doi.encode()).hexdigest() return hashlib.md5(title.lower().encode()).hexdigest() async def index_paper( self, title: str, abstract: str, authors: List[str], doi: Optional[str] = None, journal: Optional[str] = None, year: Optional[int] = None, findings: Optional[str] = None, url: Optional[str] = None, paper_type: str = "research" ) -> Dict[str, Any]: """Index a research paper with metadata""" if not self.index: return {"status": "error", "message": "Index not initialized"} # Generate unique ID paper_id = self.generate_paper_id(title, doi) # Check if already indexed if paper_id in papers_metadata: return { "status": "already_indexed", "paper_id": paper_id, "title": title, "message": "Paper already in research memory" } # Prepare document text doc_text = f"Title: {title}\n\n" doc_text += f"Authors: {', '.join(authors)}\n\n" if journal: doc_text += f"Journal: {journal}\n" if year: doc_text += f"Year: {year}\n\n" doc_text += f"Abstract: {abstract}\n\n" if findings: doc_text += f"Key Findings: {findings}\n\n" # Create document with metadata (ChromaDB only accepts strings, not lists) metadata = { "paper_id": paper_id, "title": title, "authors": ", ".join(authors) if authors else "", # Convert list to string "doi": doi, "journal": journal, "year": year, "url": url, "paper_type": paper_type, "indexed_at": datetime.now().isoformat() } document = Document( text=doc_text, metadata=metadata ) try: # Add to index self.index.insert(document) # Store metadata papers_metadata[paper_id] = metadata self._save_metadata() logger.info(f"Indexed paper: {title}") return { "status": "success", "paper_id": paper_id, "title": title, "message": f"Successfully indexed paper into research memory" } except Exception as e: logger.error(f"Failed to index paper: {e}") return { "status": "error", "message": f"Failed to index paper: {str(e)}" } async def search_similar( self, query: str, top_k: int = 5, include_scores: bool = True ) -> List[Dict[str, Any]]: """Search for similar research in memory""" if not self.index: return [] try: # Use retriever for direct vector search (no LLM needed) retriever = self.index.as_retriever( similarity_top_k=top_k ) # Search using retriever nodes = retriever.retrieve(query) results = [] for node in nodes: result = { "text": node.text[:500] + "..." if len(node.text) > 500 else node.text, "metadata": node.metadata, "score": node.score if include_scores else None } results.append(result) return results except Exception as e: logger.error(f"Search failed: {e}") return [] # Global manager - will be initialized on first use memory_manager = None _initialization_lock = asyncio.Lock() # Prevent race conditions during initialization _initialization_started = False async def ensure_initialized(): """Ensure the memory manager is initialized (lazy initialization).""" global memory_manager, _initialization_started # Quick check without lock if memory_manager is not None: return True # Thread-safe initialization async with _initialization_lock: # Double-check after acquiring lock if memory_manager is not None: return True if not LLAMAINDEX_AVAILABLE: return False if _initialization_started: # Another thread is initializing, wait for it while memory_manager is None and _initialization_started: await asyncio.sleep(0.1) return memory_manager is not None try: _initialization_started = True logger.info("🔄 Initializing LlamaIndex RAG system (this may take 20-30 seconds)...") logger.info(" Loading BioBERT embedding model...") # Initialize the memory manager memory_manager = ResearchMemoryManager() logger.info("✅ LlamaIndex RAG system initialized successfully") return True except Exception as e: logger.error(f"❌ Failed to initialize LlamaIndex: {e}") _initialization_started = False return False @mcp.tool() async def index_paper( title: str, abstract: str, authors: str, doi: Optional[str] = None, journal: Optional[str] = None, year: Optional[int] = None, findings: Optional[str] = None, url: Optional[str] = None ) -> str: """Index a research paper into persistent memory for future retrieval. The agent's research memory persists across sessions, building knowledge over time. Args: title: Paper title abstract: Paper abstract or summary authors: Comma-separated list of authors doi: Digital Object Identifier (optional) journal: Journal or preprint server name (optional) year: Publication year (optional) findings: Key findings or implications (optional) url: URL to paper (optional) Returns: Status of indexing operation """ if not LLAMAINDEX_AVAILABLE: return json.dumps({ "status": "error", "error": "LlamaIndex not installed", "message": "Install with: pip install llama-index chromadb sentence-transformers" }, indent=2) # Lazy initialization on first use if not await ensure_initialized(): return json.dumps({ "status": "error", "error": "Memory manager initialization failed", "message": "Check LlamaIndex configuration and dependencies" }, indent=2) try: # Parse authors authors_list = [a.strip() for a in authors.split(",")] result = await memory_manager.index_paper( title=title, abstract=abstract, authors=authors_list, doi=doi, journal=journal, year=year, findings=findings, url=url ) if result["status"] == "success": return json.dumps({ "status": "success", "paper_id": result["paper_id"], "title": result["title"], "message": f"✅ Indexed into research memory. Total papers: {len(papers_metadata)}", "total_papers_indexed": len(papers_metadata) }, indent=2) elif result["status"] == "already_indexed": return json.dumps({ "status": "already_indexed", "paper_id": result["paper_id"], "title": result["title"], "message": "â„šī¸ Paper already in research memory", "total_papers_indexed": len(papers_metadata) }, indent=2) else: return json.dumps({"status": "error", "error": "Indexing failed", "message": result.get("message", "Unknown error")}, indent=2) except Exception as e: logger.error(f"Error indexing paper: {e}") return json.dumps({"status": "error", "error": "Indexing error", "message": str(e)}, indent=2) @mcp.tool() async def semantic_search( query: str, max_results: int = 5 ) -> str: """Search research memory using semantic similarity. Finds papers similar to your query across all indexed research, even if they don't contain exact keywords. Args: query: Search query (can be a question, topic, or paper abstract) max_results: Maximum number of results to return (default: 5) Returns: Similar papers from research memory """ if not LLAMAINDEX_AVAILABLE: return json.dumps({ "status": "error", "error": "LlamaIndex not installed", "message": "Install with: pip install llama-index chromadb sentence-transformers" }, indent=2) # Lazy initialization on first use if not await ensure_initialized(): return json.dumps({ "status": "error", "error": "Memory manager initialization failed", "message": "Check LlamaIndex configuration and dependencies" }, indent=2) if not memory_manager.index: return json.dumps({ "status": "error", "error": "No research memory available", "message": "No papers have been indexed yet" }, indent=2) try: results = await memory_manager.search_similar( query=query, top_k=max_results ) if not results: return json.dumps({ "status": "no_results", "query": query, "message": "No similar research found in memory" }, indent=2) # Format results formatted_results = [] for i, result in enumerate(results, 1): metadata = result["metadata"] formatted_results.append({ "rank": i, "title": metadata.get("title", "Unknown"), "authors": metadata.get("authors", []), "year": metadata.get("year"), "journal": metadata.get("journal"), "doi": metadata.get("doi"), "url": metadata.get("url"), "similarity_score": round(result["score"], 3) if result["score"] else None, "excerpt": result["text"][:300] + "..." }) return json.dumps({ "status": "success", "query": query, "num_results": len(formatted_results), "results": formatted_results, "message": f"Found {len(formatted_results)} similar papers in research memory" }, indent=2) except Exception as e: logger.error(f"Search error: {e}") return json.dumps({"status": "error", "error": "Search failed", "message": str(e)}, indent=2) @mcp.tool() async def get_research_connections( paper_title: str, connection_type: str = "similar", max_connections: int = 5 ) -> str: """Discover connections between research papers in memory. Finds related papers that might share themes, methods, or findings. Args: paper_title: Title of paper to find connections for connection_type: Type of connections - "similar", "citations", "authors" max_connections: Maximum connections to return Returns: Connected papers with relationship descriptions """ if not LLAMAINDEX_AVAILABLE: return json.dumps({ "status": "error", "error": "LlamaIndex not installed", "message": "Install with: pip install llama-index chromadb sentence-transformers" }, indent=2) # Lazy initialization on first use if not await ensure_initialized(): return json.dumps({ "status": "error", "error": "Memory manager initialization failed", "message": "Check LlamaIndex configuration and dependencies" }, indent=2) try: # For now, we'll use similarity search # Future: implement citation networks, co-authorship graphs if connection_type == "similar": # Search for papers similar to this title results = await memory_manager.search_similar( query=paper_title, top_k=max_connections + 1 # +1 because it might include itself ) # Filter out the paper itself filtered_results = [] for result in results: if result["metadata"].get("title", "").lower() != paper_title.lower(): filtered_results.append(result) if not filtered_results: return json.dumps({ "status": "no_connections", "paper": paper_title, "message": "No connections found in research memory" }, indent=2) connections = [] for result in filtered_results[:max_connections]: metadata = result["metadata"] connections.append({ "title": metadata.get("title", "Unknown"), "authors": metadata.get("authors", []), "year": metadata.get("year"), "connection_strength": round(result["score"], 3) if result["score"] else None, "connection_type": "semantic_similarity", "url": metadata.get("url") }) return json.dumps({ "status": "success", "paper": paper_title, "connection_type": connection_type, "num_connections": len(connections), "connections": connections, "message": f"Found {len(connections)} connected papers" }, indent=2) else: return json.dumps({ "status": "not_implemented", "message": f"Connection type '{connection_type}' not yet implemented. Use 'similar' for now." }, indent=2) except Exception as e: logger.error(f"Error finding connections: {e}") return json.dumps({"status": "error", "error": "Connection search failed", "message": str(e)}, indent=2) @mcp.tool() async def list_indexed_papers( limit: int = 20, sort_by: str = "date" ) -> str: """List papers currently in research memory. Shows what research the agent has learned from previously. Args: limit: Maximum papers to list (default: 20) sort_by: Sort order - "date" (indexed date) or "year" (publication year) Returns: List of indexed papers with metadata """ if not papers_metadata: return json.dumps({ "status": "empty", "message": "No papers indexed yet. Research memory is empty.", "total_papers": 0 }, indent=2) try: # Get papers list papers_list = [] for paper_id, metadata in papers_metadata.items(): # Convert authors string back to list authors_str = metadata.get("authors", "") authors_list = authors_str.split(", ") if authors_str else [] papers_list.append({ "paper_id": paper_id, "title": metadata.get("title", "Unknown"), "authors": authors_list, "year": metadata.get("year"), "journal": metadata.get("journal"), "doi": metadata.get("doi"), "indexed_at": metadata.get("indexed_at"), "url": metadata.get("url") }) # Sort if sort_by == "date": papers_list.sort(key=lambda x: x.get("indexed_at", ""), reverse=True) elif sort_by == "year": papers_list.sort(key=lambda x: x.get("year", 0), reverse=True) # Limit papers_list = papers_list[:limit] return json.dumps({ "status": "success", "total_papers": len(papers_metadata), "showing": len(papers_list), "sort_by": sort_by, "papers": papers_list, "message": f"Research memory contains {len(papers_metadata)} papers" }, indent=2) except Exception as e: logger.error(f"Error listing papers: {e}") return json.dumps({"status": "error", "error": "Failed to list papers", "message": str(e)}, indent=2) @mcp.tool() async def clear_research_memory( confirm: bool = False ) -> str: """Clear all papers from research memory. âš ī¸ This will permanently delete all indexed research! Args: confirm: Must be True to actually clear memory Returns: Confirmation of memory clearing """ global papers_metadata if not confirm: return json.dumps({ "status": "confirmation_required", "message": "âš ī¸ This will delete all research memory. Set confirm=True to proceed.", "current_papers": len(papers_metadata) }, indent=2) try: # Check if memory manager needs initialization # Only initialize if we have papers to clear if papers_metadata and not memory_manager: await ensure_initialized() # Clear ChromaDB collection if memory_manager and memory_manager.collection: # Delete and recreate collection memory_manager.chroma_client.delete_collection("als_research") memory_manager.collection = memory_manager.chroma_client.create_collection("als_research") # Reinitialize index memory_manager._initialize_index() # Clear metadata num_papers = len(papers_metadata) papers_metadata = {} # Save empty metadata if memory_manager: memory_manager._save_metadata() logger.info(f"Cleared research memory: {num_papers} papers removed") return json.dumps({ "status": "success", "message": f"✅ Research memory cleared. Removed {num_papers} papers.", "papers_removed": num_papers }, indent=2) except Exception as e: logger.error(f"Error clearing memory: {e}") return json.dumps({"status": "error", "error": "Failed to clear memory", "message": str(e)}, indent=2) if __name__ == "__main__": # Check for required packages if not LLAMAINDEX_AVAILABLE: logger.error("LlamaIndex dependencies not installed!") logger.info("Install with: pip install llama-index-core llama-index-vector-stores-chroma") logger.info(" pip install chromadb sentence-transformers transformers") else: logger.info(f"LlamaIndex RAG server starting...") logger.info(f"ChromaDB path: {CHROMA_DB_PATH}") logger.info(f"Embedding model: {EMBED_MODEL}") logger.info(f"Papers in memory: {len(papers_metadata)}") # Run the MCP server mcp.run(transport="stdio")