Spaces:
Sleeping
Sleeping
Update agent/agent_core.py
Browse files- agent/agent_core.py +102 -169
agent/agent_core.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
"""
|
| 2 |
LifeAdmin AI - Core Agent Logic
|
| 3 |
-
|
| 4 |
"""
|
| 5 |
|
| 6 |
import asyncio
|
|
@@ -16,9 +16,9 @@ from agent.memory import MemoryStore
|
|
| 16 |
from utils.llm_utils import get_llm_response
|
| 17 |
|
| 18 |
|
| 19 |
-
#
|
| 20 |
-
#
|
| 21 |
-
#
|
| 22 |
|
| 23 |
class TaskStatus(Enum):
|
| 24 |
PENDING = "pending"
|
|
@@ -29,9 +29,8 @@ class TaskStatus(Enum):
|
|
| 29 |
|
| 30 |
@dataclass
|
| 31 |
class AgentThought:
|
| 32 |
-
"""Represents a thought/step in agent reasoning"""
|
| 33 |
step: int
|
| 34 |
-
type: str
|
| 35 |
content: str
|
| 36 |
tool_name: Optional[str] = None
|
| 37 |
tool_args: Optional[Dict] = None
|
|
@@ -45,7 +44,6 @@ class AgentThought:
|
|
| 45 |
|
| 46 |
@dataclass
|
| 47 |
class AgentTask:
|
| 48 |
-
"""Represents an atomic MCP operation"""
|
| 49 |
id: str
|
| 50 |
description: str
|
| 51 |
tool: str
|
|
@@ -55,9 +53,9 @@ class AgentTask:
|
|
| 55 |
error: Optional[str] = None
|
| 56 |
|
| 57 |
|
| 58 |
-
#
|
| 59 |
# MAIN AGENT CLASS
|
| 60 |
-
#
|
| 61 |
|
| 62 |
class LifeAdminAgent:
|
| 63 |
|
|
@@ -66,58 +64,47 @@ class LifeAdminAgent:
|
|
| 66 |
self.rag_engine = RAGEngine()
|
| 67 |
self.memory = MemoryStore()
|
| 68 |
self.thoughts: List[AgentThought] = []
|
| 69 |
-
self.current_context = {}
|
| 70 |
|
| 71 |
-
#
|
| 72 |
-
#
|
| 73 |
-
#
|
| 74 |
|
| 75 |
-
def
|
| 76 |
self.thoughts = []
|
| 77 |
-
self.current_context = {}
|
| 78 |
|
| 79 |
-
#
|
| 80 |
-
# PLANNING
|
| 81 |
-
#
|
| 82 |
|
| 83 |
-
async def plan(self, user_request: str,
|
| 84 |
|
| 85 |
self.thoughts.append(AgentThought(
|
| 86 |
step=len(self.thoughts) + 1,
|
| 87 |
type="planning",
|
| 88 |
-
content=f"Analyzing
|
| 89 |
))
|
| 90 |
|
| 91 |
-
# List tools available through MCP
|
| 92 |
tools = await self.mcp_client.list_tools()
|
| 93 |
-
|
| 94 |
-
f"- {tool['name']}: {tool.get('description', '')}" for tool in tools
|
| 95 |
-
])
|
| 96 |
|
| 97 |
-
|
| 98 |
-
relevant_docs = []
|
| 99 |
if user_request.strip():
|
| 100 |
-
|
| 101 |
|
| 102 |
-
rag_context = "\n".join(
|
| 103 |
-
[doc["text"][:200] for doc in relevant_docs]
|
| 104 |
-
) if relevant_docs else "No relevant documents"
|
| 105 |
|
| 106 |
-
# Memory
|
| 107 |
memory_context = self.memory.get_relevant_memories(user_request)
|
| 108 |
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
You are an autonomous assistant. Create a JSON task plan.
|
| 112 |
|
| 113 |
-
|
| 114 |
{user_request}
|
| 115 |
|
| 116 |
-
|
| 117 |
-
{', '.join(available_files) if available_files else 'None'}
|
| 118 |
|
| 119 |
-
|
| 120 |
-
{
|
| 121 |
|
| 122 |
RAG CONTEXT:
|
| 123 |
{rag_context}
|
|
@@ -125,66 +112,54 @@ RAG CONTEXT:
|
|
| 125 |
MEMORY:
|
| 126 |
{memory_context}
|
| 127 |
|
| 128 |
-
Return ONLY
|
| 129 |
[
|
| 130 |
{{
|
| 131 |
-
"id": "
|
| 132 |
"description": "Extract text",
|
| 133 |
"tool": "ocr_extract_text",
|
| 134 |
-
"args": {{"file_path": "
|
| 135 |
}}
|
| 136 |
]
|
| 137 |
"""
|
| 138 |
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
type="planning",
|
| 142 |
-
content="Generating plan with LLM..."
|
| 143 |
-
))
|
| 144 |
-
|
| 145 |
-
try:
|
| 146 |
-
raw = await get_llm_response(planning_prompt, temperature=0.2)
|
| 147 |
-
txt = raw.strip()
|
| 148 |
-
|
| 149 |
-
# Remove markdown wrappers
|
| 150 |
-
if "```json" in txt:
|
| 151 |
-
txt = txt.split("```json")[1].split("```")[0].strip()
|
| 152 |
-
elif "```" in txt:
|
| 153 |
-
txt = txt.split("```")[1].split("```")[0].strip()
|
| 154 |
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
for task in plan_json
|
| 160 |
-
]
|
| 161 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
self.thoughts.append(AgentThought(
|
| 163 |
-
step=len(self.thoughts)
|
| 164 |
type="planning",
|
| 165 |
-
content=
|
| 166 |
))
|
|
|
|
| 167 |
|
| 168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
-
|
| 171 |
-
self.thoughts.append(AgentThought(
|
| 172 |
-
step=len(self.thoughts) + 1,
|
| 173 |
-
type="planning",
|
| 174 |
-
content=f"Planning failed: {e}"
|
| 175 |
-
))
|
| 176 |
-
return []
|
| 177 |
|
| 178 |
-
#
|
| 179 |
-
#
|
| 180 |
-
#
|
| 181 |
|
| 182 |
-
async def execute_task(self, task: AgentTask)
|
| 183 |
|
| 184 |
self.thoughts.append(AgentThought(
|
| 185 |
-
step=len(self.thoughts)
|
| 186 |
type="tool_call",
|
| 187 |
-
content=f"Executing
|
| 188 |
tool_name=task.tool,
|
| 189 |
tool_args=task.args
|
| 190 |
))
|
|
@@ -193,14 +168,13 @@ Return ONLY valid JSON list of tasks like:
|
|
| 193 |
|
| 194 |
try:
|
| 195 |
result = await self.mcp_client.call_tool(task.tool, task.args)
|
| 196 |
-
|
| 197 |
-
task.status = TaskStatus.COMPLETED
|
| 198 |
task.result = result
|
|
|
|
| 199 |
|
| 200 |
self.thoughts.append(AgentThought(
|
| 201 |
-
step=len(self.thoughts)
|
| 202 |
type="tool_call",
|
| 203 |
-
content=f"✓ Completed
|
| 204 |
tool_name=task.tool,
|
| 205 |
tool_result=result
|
| 206 |
))
|
|
@@ -210,128 +184,87 @@ Return ONLY valid JSON list of tasks like:
|
|
| 210 |
task.error = str(e)
|
| 211 |
|
| 212 |
self.thoughts.append(AgentThought(
|
| 213 |
-
step=len(self.thoughts)
|
| 214 |
type="tool_call",
|
| 215 |
-
content=f"✗ Failed: {
|
| 216 |
tool_name=task.tool
|
| 217 |
))
|
| 218 |
|
| 219 |
return task
|
| 220 |
|
| 221 |
-
#
|
| 222 |
-
# REFLECTION
|
| 223 |
-
#
|
| 224 |
|
| 225 |
-
async def reflect(self, tasks: List[AgentTask],
|
| 226 |
|
| 227 |
self.thoughts.append(AgentThought(
|
| 228 |
-
step=len(self.thoughts)
|
| 229 |
type="reflection",
|
| 230 |
-
content="
|
| 231 |
))
|
| 232 |
|
| 233 |
-
|
| 234 |
for t in tasks:
|
| 235 |
if t.status == TaskStatus.COMPLETED:
|
| 236 |
-
|
| 237 |
-
results_string.append(f"✓ {t.description}: {short}")
|
| 238 |
else:
|
| 239 |
-
|
| 240 |
|
| 241 |
-
|
| 242 |
-
|
| 243 |
|
| 244 |
REQUEST:
|
| 245 |
-
{
|
| 246 |
|
| 247 |
RESULTS:
|
| 248 |
-
{chr(10).join(
|
| 249 |
|
| 250 |
-
|
| 251 |
-
- What succeeded
|
| 252 |
-
- What failed
|
| 253 |
-
- What files/events/emails were produced
|
| 254 |
-
- Next steps
|
| 255 |
"""
|
| 256 |
|
| 257 |
-
|
| 258 |
-
answer = await get_llm_response(reflection_prompt, temperature=0.5)
|
| 259 |
-
|
| 260 |
-
self.thoughts.append(AgentThought(
|
| 261 |
-
step=len(self.thoughts) + 1,
|
| 262 |
-
type="answer",
|
| 263 |
-
content=answer
|
| 264 |
-
))
|
| 265 |
-
|
| 266 |
-
# Write to memory
|
| 267 |
-
self.memory.add_memory(
|
| 268 |
-
f"Request: {request}\nAnswer: {answer}",
|
| 269 |
-
metadata={"type": "task_completion", "timestamp": time.time()}
|
| 270 |
-
)
|
| 271 |
|
| 272 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
|
| 274 |
-
|
| 275 |
-
|
|
|
|
|
|
|
| 276 |
|
| 277 |
-
|
| 278 |
-
step=len(self.thoughts) + 1,
|
| 279 |
-
type="answer",
|
| 280 |
-
content=errmsg
|
| 281 |
-
))
|
| 282 |
|
| 283 |
-
|
|
|
|
|
|
|
| 284 |
|
| 285 |
-
|
| 286 |
-
# STREAMING EXECUTION LOOP (FIXED)
|
| 287 |
-
# -------------------------------------------
|
| 288 |
-
|
| 289 |
-
async def execute(self, request: str, files: List[str] = None, stream_thoughts=False):
|
| 290 |
"""
|
| 291 |
-
|
| 292 |
-
|
| 293 |
"""
|
| 294 |
|
| 295 |
-
self.
|
| 296 |
-
|
| 297 |
-
# --- PLANNING ---
|
| 298 |
-
tasks = await self.plan(request, files)
|
| 299 |
-
if stream_thoughts:
|
| 300 |
-
for th in self.thoughts:
|
| 301 |
-
yield th
|
| 302 |
|
|
|
|
| 303 |
if not tasks:
|
| 304 |
-
#
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
type="answer",
|
| 308 |
-
content="Could not create plan. Try rephrasing."
|
| 309 |
-
)
|
| 310 |
-
self.thoughts.append(thought)
|
| 311 |
-
if stream_thoughts:
|
| 312 |
-
yield thought
|
| 313 |
-
return
|
| 314 |
-
|
| 315 |
-
# --- EXECUTION ---
|
| 316 |
executed = []
|
| 317 |
for t in tasks:
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
yield self.thoughts[-1]
|
| 322 |
-
|
| 323 |
-
# --- REFLECTION ---
|
| 324 |
-
final_answer = await self.reflect(executed, request)
|
| 325 |
-
if stream_thoughts:
|
| 326 |
-
yield self.thoughts[-1]
|
| 327 |
-
return
|
| 328 |
-
|
| 329 |
-
# If NOT streaming: return normal output
|
| 330 |
return final_answer, self.thoughts
|
| 331 |
|
| 332 |
-
#
|
| 333 |
-
#
|
| 334 |
-
#
|
| 335 |
|
| 336 |
-
def get_thought_trace(self)
|
| 337 |
return [asdict(t) for t in self.thoughts]
|
|
|
|
| 1 |
"""
|
| 2 |
LifeAdmin AI - Core Agent Logic
|
| 3 |
+
Final stable version (No async-generators – fully HF compatible)
|
| 4 |
"""
|
| 5 |
|
| 6 |
import asyncio
|
|
|
|
| 16 |
from utils.llm_utils import get_llm_response
|
| 17 |
|
| 18 |
|
| 19 |
+
# =============================
|
| 20 |
+
# DATA MODELS
|
| 21 |
+
# =============================
|
| 22 |
|
| 23 |
class TaskStatus(Enum):
|
| 24 |
PENDING = "pending"
|
|
|
|
| 29 |
|
| 30 |
@dataclass
|
| 31 |
class AgentThought:
|
|
|
|
| 32 |
step: int
|
| 33 |
+
type: str # 'planning', 'tool_call', 'reflection', 'answer'
|
| 34 |
content: str
|
| 35 |
tool_name: Optional[str] = None
|
| 36 |
tool_args: Optional[Dict] = None
|
|
|
|
| 44 |
|
| 45 |
@dataclass
|
| 46 |
class AgentTask:
|
|
|
|
| 47 |
id: str
|
| 48 |
description: str
|
| 49 |
tool: str
|
|
|
|
| 53 |
error: Optional[str] = None
|
| 54 |
|
| 55 |
|
| 56 |
+
# =============================
|
| 57 |
# MAIN AGENT CLASS
|
| 58 |
+
# =============================
|
| 59 |
|
| 60 |
class LifeAdminAgent:
|
| 61 |
|
|
|
|
| 64 |
self.rag_engine = RAGEngine()
|
| 65 |
self.memory = MemoryStore()
|
| 66 |
self.thoughts: List[AgentThought] = []
|
|
|
|
| 67 |
|
| 68 |
+
# -----------------------
|
| 69 |
+
# UTIL
|
| 70 |
+
# -----------------------
|
| 71 |
|
| 72 |
+
def reset(self):
|
| 73 |
self.thoughts = []
|
|
|
|
| 74 |
|
| 75 |
+
# -----------------------
|
| 76 |
+
# PLANNING
|
| 77 |
+
# -----------------------
|
| 78 |
|
| 79 |
+
async def plan(self, user_request: str, files: List[str] = None) -> List[AgentTask]:
|
| 80 |
|
| 81 |
self.thoughts.append(AgentThought(
|
| 82 |
step=len(self.thoughts) + 1,
|
| 83 |
type="planning",
|
| 84 |
+
content=f"Analyzing: {user_request}"
|
| 85 |
))
|
| 86 |
|
|
|
|
| 87 |
tools = await self.mcp_client.list_tools()
|
| 88 |
+
tool_desc = "\n".join([f"- {t['name']}: {t['description']}" for t in tools])
|
|
|
|
|
|
|
| 89 |
|
| 90 |
+
rag_docs = []
|
|
|
|
| 91 |
if user_request.strip():
|
| 92 |
+
rag_docs = await self.rag_engine.search(user_request, k=3)
|
| 93 |
|
| 94 |
+
rag_context = "\n".join([d["text"][:200] for d in rag_docs]) if rag_docs else "None"
|
|
|
|
|
|
|
| 95 |
|
|
|
|
| 96 |
memory_context = self.memory.get_relevant_memories(user_request)
|
| 97 |
|
| 98 |
+
prompt = f"""
|
| 99 |
+
You are a task planner.
|
|
|
|
| 100 |
|
| 101 |
+
REQUEST:
|
| 102 |
{user_request}
|
| 103 |
|
| 104 |
+
FILES: {files or []}
|
|
|
|
| 105 |
|
| 106 |
+
TOOLS:
|
| 107 |
+
{tool_desc}
|
| 108 |
|
| 109 |
RAG CONTEXT:
|
| 110 |
{rag_context}
|
|
|
|
| 112 |
MEMORY:
|
| 113 |
{memory_context}
|
| 114 |
|
| 115 |
+
Return ONLY JSON list:
|
| 116 |
[
|
| 117 |
{{
|
| 118 |
+
"id": "task1",
|
| 119 |
"description": "Extract text",
|
| 120 |
"tool": "ocr_extract_text",
|
| 121 |
+
"args": {{"file_path": "x.pdf"}}
|
| 122 |
}}
|
| 123 |
]
|
| 124 |
"""
|
| 125 |
|
| 126 |
+
response = await get_llm_response(prompt, temperature=0.2)
|
| 127 |
+
text = response.strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
+
if "```json" in text:
|
| 130 |
+
text = text.split("```json")[1].split("```")[0].strip()
|
| 131 |
+
elif "```" in text:
|
| 132 |
+
text = text.split("```")[1].split("```")[0].strip()
|
|
|
|
|
|
|
| 133 |
|
| 134 |
+
try:
|
| 135 |
+
plan_data = json.loads(text)
|
| 136 |
+
tasks = [AgentTask(**t) for t in plan_data]
|
| 137 |
+
except:
|
| 138 |
self.thoughts.append(AgentThought(
|
| 139 |
+
step=len(self.thoughts)+1,
|
| 140 |
type="planning",
|
| 141 |
+
content="Planning failed (invalid JSON)"
|
| 142 |
))
|
| 143 |
+
return []
|
| 144 |
|
| 145 |
+
self.thoughts.append(AgentThought(
|
| 146 |
+
step=len(self.thoughts)+1,
|
| 147 |
+
type="planning",
|
| 148 |
+
content=f"Created {len(tasks)} tasks"
|
| 149 |
+
))
|
| 150 |
|
| 151 |
+
return tasks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
|
| 153 |
+
# -----------------------
|
| 154 |
+
# EXECUTION
|
| 155 |
+
# -----------------------
|
| 156 |
|
| 157 |
+
async def execute_task(self, task: AgentTask):
|
| 158 |
|
| 159 |
self.thoughts.append(AgentThought(
|
| 160 |
+
step=len(self.thoughts)+1,
|
| 161 |
type="tool_call",
|
| 162 |
+
content=f"Executing: {task.description}",
|
| 163 |
tool_name=task.tool,
|
| 164 |
tool_args=task.args
|
| 165 |
))
|
|
|
|
| 168 |
|
| 169 |
try:
|
| 170 |
result = await self.mcp_client.call_tool(task.tool, task.args)
|
|
|
|
|
|
|
| 171 |
task.result = result
|
| 172 |
+
task.status = TaskStatus.COMPLETED
|
| 173 |
|
| 174 |
self.thoughts.append(AgentThought(
|
| 175 |
+
step=len(self.thoughts)+1,
|
| 176 |
type="tool_call",
|
| 177 |
+
content=f"✓ Completed",
|
| 178 |
tool_name=task.tool,
|
| 179 |
tool_result=result
|
| 180 |
))
|
|
|
|
| 184 |
task.error = str(e)
|
| 185 |
|
| 186 |
self.thoughts.append(AgentThought(
|
| 187 |
+
step=len(self.thoughts)+1,
|
| 188 |
type="tool_call",
|
| 189 |
+
content=f"✗ Failed: {e}",
|
| 190 |
tool_name=task.tool
|
| 191 |
))
|
| 192 |
|
| 193 |
return task
|
| 194 |
|
| 195 |
+
# -----------------------
|
| 196 |
+
# REFLECTION
|
| 197 |
+
# -----------------------
|
| 198 |
|
| 199 |
+
async def reflect(self, tasks: List[AgentTask], original: str) -> str:
|
| 200 |
|
| 201 |
self.thoughts.append(AgentThought(
|
| 202 |
+
step=len(self.thoughts)+1,
|
| 203 |
type="reflection",
|
| 204 |
+
content="Summarizing results..."
|
| 205 |
))
|
| 206 |
|
| 207 |
+
results = []
|
| 208 |
for t in tasks:
|
| 209 |
if t.status == TaskStatus.COMPLETED:
|
| 210 |
+
results.append(f"✓ {t.description}: {str(t.result)[:200]}")
|
|
|
|
| 211 |
else:
|
| 212 |
+
results.append(f"✗ {t.description}: {t.error}")
|
| 213 |
|
| 214 |
+
prompt = f"""
|
| 215 |
+
Provide a helpful summary for the user.
|
| 216 |
|
| 217 |
REQUEST:
|
| 218 |
+
{original}
|
| 219 |
|
| 220 |
RESULTS:
|
| 221 |
+
{chr(10).join(results)}
|
| 222 |
|
| 223 |
+
Write a clear, friendly answer.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
"""
|
| 225 |
|
| 226 |
+
answer = await get_llm_response(prompt, temperature=0.4)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
|
| 228 |
+
self.thoughts.append(AgentThought(
|
| 229 |
+
step=len(self.thoughts)+1,
|
| 230 |
+
type="answer",
|
| 231 |
+
content=answer
|
| 232 |
+
))
|
| 233 |
|
| 234 |
+
self.memory.add_memory(
|
| 235 |
+
content=f"Request: {original}\nAnswer: {answer}",
|
| 236 |
+
metadata={"timestamp": time.time()}
|
| 237 |
+
)
|
| 238 |
|
| 239 |
+
return answer
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
|
| 241 |
+
# -----------------------
|
| 242 |
+
# MAIN EXECUTION (FULLY FIXED)
|
| 243 |
+
# -----------------------
|
| 244 |
|
| 245 |
+
async def execute(self, user_request: str, files: List[str] = None):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
"""
|
| 247 |
+
A simple coroutine returning final_answer, thoughts
|
| 248 |
+
No yields → No async generator → No syntax errors
|
| 249 |
"""
|
| 250 |
|
| 251 |
+
self.reset()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
|
| 253 |
+
tasks = await self.plan(user_request, files)
|
| 254 |
if not tasks:
|
| 255 |
+
# return is allowed now
|
| 256 |
+
return "Could not generate plan. Try rephrasing.", self.thoughts
|
| 257 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
executed = []
|
| 259 |
for t in tasks:
|
| 260 |
+
executed.append(await self.execute_task(t))
|
| 261 |
+
|
| 262 |
+
final_answer = await self.reflect(executed, user_request)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
return final_answer, self.thoughts
|
| 264 |
|
| 265 |
+
# -----------------------
|
| 266 |
+
# EXPORT THOUGHTS
|
| 267 |
+
# -----------------------
|
| 268 |
|
| 269 |
+
def get_thought_trace(self):
|
| 270 |
return [asdict(t) for t in self.thoughts]
|