File size: 18,918 Bytes
c0dcd9b
c613b63
c0dcd9b
 
 
 
 
 
 
 
c613b63
c0dcd9b
 
 
 
c613b63
c0dcd9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
import os, json, re, random, time, shutil, threading
import gradio as gr
from datasets import load_dataset, Dataset, concatenate_datasets
from huggingface_hub import HfApi, create_repo, upload_folder, whoami
from transformers import (
    AutoTokenizer, AutoModelForCausalLM,
    TrainingArguments
)
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training, PeftModel
from trl import SFTTrainer

# ---------- Defaults & env ----------
BASE = os.getenv("BASE", "meta-llama/Llama-3.2-3B-Instruct")
OUT_REPO = os.getenv("OUT_REPO", "your-username/llama32-3b-thinking")
HF_TOKEN = os.getenv("HF_TOKEN", None)

random.seed(17)

# ---------- Helpers ----------
def _ok(s): return gr.update(value=s, visible=True)

def try_load(options, **kw):
    for dsid in options:
        try:
            return load_dataset(dsid, **kw)
        except Exception:
            continue
    raise RuntimeError(f"Failed loading any of: {options}")

def trim_text(txt, max_words=220):
    w = (txt or "").split()
    return " ".join(w[:max_words])

def pack_record(instruction, rationale, final, inp=""):
    rationale = trim_text(rationale, 220)
    if len(rationale.split()) < 3:  # drop trivial
        return None
    return {
        "instruction": instruction.strip(),
        "input": (inp or "").strip(),
        "rationale": rationale.strip(),
        "final": (final or "").strip()
    }

def build_hotpot_rationale(supporting_facts, context, answer):
    m = {title: sents for title, sents in context}
    bits = []
    for title, idx in supporting_facts[:3]:
        try:
            s = m[title][idx]
            bits.append(f"[{title}] {s}")
        except Exception:
            pass
    if not bits: return None
    return " ".join(bits) + f" ⇒ {answer}"

# ---------- Dataset loaders (blend) ----------
def load_cose():
    ds = try_load(["Salesforce/cos_e", "cos_e"], name="v1.11")["train"]
    rows=[]
    for ex in ds:
        choices = ex.get("choices") or ex.get("options") or []
        rec = pack_record(
            instruction=f"Q: {ex['question']}\nOptions: {', '.join(choices)}",
            rationale=ex.get("abstractive_explanation") or ex.get("rationale",""),
            final=ex["answer"]
        )
        if rec: rows.append(rec)
    return Dataset.from_list(rows)

def load_esnli(limit=60000):
    ds = try_load(["esnli","esnli/esnli"])["train"].select(range(limit))
    rows=[]
    for ex in ds:
        rat = ex.get("explanation_1") or ex.get("explanation_2") or ex.get("explanation_3") or ""
        rec = pack_record(
            instruction=f"Premise: {ex['premise']}\nHypothesis: {ex['hypothesis']}\n"
                       f"Label (entailment/contradiction/neutral) and justify briefly.",
            rationale=rat, final=ex["label"]
        )
        if rec: rows.append(rec)
    return Dataset.from_list(rows)

def load_ecqa():
    ds = try_load(["yangdong/ecqa","ecqa","google-research-datasets/ecqa"])["train"]
    rows=[]
    for ex in ds:
        opts = [ex.get(k) for k in ["opa","opb","opc","opd","ope"] if ex.get(k)]
        ans = ex.get("correct_ans","") or ex.get("label","")
        exp = ex.get("explanation","") or ex.get("rationale","")
        rec = pack_record(
            instruction=f"Q: {ex.get('question','')}\nOptions: {', '.join(opts)}",
            rationale=exp, final=str(ans)
        )
        if rec: rows.append(rec)
    return Dataset.from_list(rows)

def load_strategyqa(limit=6000):
    ds = try_load(["voidful/StrategyQA","allenai/strategyqa","strategy_qa"])["train"]
    rows=[]; i=0
    for ex in ds:
        if limit and i>=limit: break
        i+=1
        q = ex.get("question") or ex.get("q","")
        ans = str(ex.get("answer","")).lower()
        rat = ex.get("decomposition","") or " ".join(ex.get("facts",[])) or ex.get("evidence","")
        if not rat: rat = "Reason step by step to reach yes/no."
        rec = pack_record(instruction=q, rationale=rat,
                          final="yes" if ans in ["1","true","yes"] else "no")
        if rec: rows.append(rec)
    return Dataset.from_list(rows)

def load_hotpot(sample=15000):
    ds = try_load(["hotpotqa/hotpot_qa","hotpot_qa"], name="distractor")["train"]
    idx = list(range(len(ds))); random.shuffle(idx); idx = idx[:sample]
    rows=[]
    for i in idx:
        ex = ds[i]
        rat = build_hotpot_rationale(ex["supporting_facts"], ex["context"], ex["answer"])
        if not rat: continue
        rec = pack_record(instruction=ex["question"], rationale=rat, final=ex["answer"])
        if rec: rows.append(rec)
    return Dataset.from_list(rows)

def load_gsm8k_train():
    ds = try_load(["openai/gsm8k","gsm8k"], name="main")["train"]
    rows=[]
    for ex in ds:
        sol = ex.get("solution","")
        m = re.findall(r"(-?\d+(?:\.\d+)?)", sol)
        final = m[-1] if m else ex.get("answer","")
        rec = pack_record(instruction=ex["question"], rationale=sol, final=str(final))
        if rec: rows.append(rec)
    return Dataset.from_list(rows)

def load_openthoughts(limit=100000):
    try:
        ds = try_load(["open-thoughts/OpenThoughts-114k","OpenThoughts-114k"])["train"]
        if limit: ds = ds.select(range(min(limit, len(ds))))
        rows=[]
        for ex in ds:
            q = ex.get("question") or ex.get("instruction") or ""
            rat = ex.get("cot") or ex.get("rationale") or ""
            ans = ex.get("answer") or ex.get("final") or ""
            rec = pack_record(instruction=q, rationale=rat, final=ans)
            if rec: rows.append(rec)
        return Dataset.from_list(rows)
    except Exception:
        return Dataset.from_list([])

def load_bespoke():
    try:
        ds = try_load(["HuggingFaceH4/Bespoke-Stratos-17k","Bespoke-Stratos-17k"])["train"]
        rows=[]
        for ex in ds:
            q = ex.get("prompt") or ex.get("question") or ""
            rat = ex.get("reasoning") or ex.get("rationale") or ""
            ans = ex.get("output") or ex.get("final") or ""
            rec = pack_record(instruction=q, rationale=rat, final=ans)
            if rec: rows.append(rec)
        return Dataset.from_list(rows)
    except Exception:
        return Dataset.from_list([])

# ---------- Build blend ----------
def build_blend():
    parts = [
        load_openthoughts(limit=100000),
        load_bespoke(),
        load_gsm8k_train(),
        load_cose(),
        load_esnli(limit=60000),
        load_ecqa(),
        load_strategyqa(limit=6000),
        load_hotpot(sample=15000),
    ]
    parts = [p for p in parts if len(p)>0]
    mix = concatenate_datasets(parts).shuffle(seed=17)
    n_total = len(mix)
    # split tiny eval
    eval_size = min(3000, max(1000, int(0.01*n_total)))
    eval_ds = mix.select(range(eval_size))
    mix.to_json("blend_train.jsonl", orient="records", lines=True)
    eval_ds.to_json("blend_eval.jsonl", orient="records", lines=True)
    return f"Blend built. Train: {n_total} rows. Eval: {len(eval_ds)} rows. Files: blend_train.jsonl, blend_eval.jsonl"

# ---------- Formatter for SFT ----------
def to_chat_formatter(tokenizer):
    def _fmt(ex):
        msgs = [
          {"role":"system","content":"Think privately in <THINK>...</THINK>. Answer ONLY in <FINAL>...</FINAL>."},
          {"role":"user","content": ex["instruction"] + (("\n\n"+ex["input"]) if ex.get("input") else "")},
          {"role":"assistant","content": f"<THINK>{ex['rationale']}</THINK>\n<FINAL>{ex['final']}</FINAL>"}
        ]
        return {"text": tokenizer.apply_chat_template(msgs, tokenize=False, add_generation_prompt=False)}
    return _fmt

# ---------- Train LoRA ----------
def train_lora(base=BASE, out_dir="thinking3b-lora", epochs=2, lr=2e-4, r=32, alpha=16, dropout=0.05, max_len=3072):
    assert HF_TOKEN, "HF_TOKEN not found (Space Secret)."
    tok = AutoTokenizer.from_pretrained(base, use_fast=True, token=HF_TOKEN)
    tok.pad_token = tok.eos_token

    train = load_dataset("json", data_files="blend_train.jsonl")["train"].map(to_chat_formatter(tok), remove_columns=["instruction","input","rationale","final"])
    evald = load_dataset("json", data_files="blend_eval.jsonl")["train"].map(to_chat_formatter(tok), remove_columns=["instruction","input","rationale","final"])

    model = AutoModelForCausalLM.from_pretrained(base, load_in_4bit=True, torch_dtype="auto", device_map="auto", token=HF_TOKEN)
    model = prepare_model_for_kbit_training(model)
    lora = LoraConfig(r=r, lora_alpha=alpha, lora_dropout=dropout,
                      target_modules=["q_proj","k_proj","v_proj","o_proj"])
    model = get_peft_model(model, lora)

    args = TrainingArguments(
        output_dir=out_dir,
        per_device_train_batch_size=1,
        gradient_accumulation_steps=8,
        learning_rate=lr,
        num_train_epochs=epochs,
        logging_steps=25,
        save_strategy="epoch",
        evaluation_strategy="epoch",
        bf16=True,
        lr_scheduler_type="cosine",
        warmup_ratio=0.03,
        weight_decay=0.0,
        max_grad_norm=1.0
    )

    trainer = SFTTrainer(
        model=model, tokenizer=tok,
        train_dataset=train, eval_dataset=evald,
        dataset_text_field="text",
        packing=True, max_seq_length=max_len,
        args=args
    )
    trainer.train()
    model.save_pretrained(out_dir)
    tok.save_pretrained(out_dir)
    return f"LoRA saved to {out_dir}"

# ---------- Merge LoRA ----------
def merge_lora(base=BASE, adapter_dir="thinking3b-lora", out_dir="thinking3b-merged"):
    tok = AutoTokenizer.from_pretrained(base, use_fast=True, token=HF_TOKEN)
    base_m = AutoModelForCausalLM.from_pretrained(base, torch_dtype="bfloat16", device_map="auto", token=HF_TOKEN)
    merged = PeftModel.from_pretrained(base_m, adapter_dir).merge_and_unload()
    merged.save_pretrained(out_dir, safe_serialization=True)
    tok.save_pretrained(out_dir)
    return f"Merged weights saved to {out_dir}"

# ---------- Push to Hub ----------
def push_to_hub(repo_id=OUT_REPO, folder="thinking3b-merged"):
    assert HF_TOKEN, "HF_TOKEN not found."
    api = HfApi(token=HF_TOKEN)
    # create repo if needed
    try:
        create_repo(repo_id, repo_type="model", token=HF_TOKEN, exist_ok=True)
    except Exception:
        pass
    # add a sane generation config
    with open(os.path.join(folder, "generation_config.json"), "w", encoding="utf-8") as f:
        json.dump({"temperature":0.2, "top_p":0.9, "max_new_tokens":512}, f)
    upload_folder(repo_id=repo_id, folder_path=folder, repo_type="model", token=HF_TOKEN)
    return f"Pushed {folder} to https://huggingface.co/{repo_id}"

# ---------- Small smoke test ----------
def smoke_run(local_model_dir="thinking3b-merged", prompt="Give 3 crisp bullets explaining CRDTs."):
    tok = AutoTokenizer.from_pretrained(local_model_dir, use_fast=True)
    m = AutoModelForCausalLM.from_pretrained(local_model_dir, torch_dtype="bfloat16", device_map="auto")
    msgs = [
        {"role":"system","content":"Think privately in <THINK>...</THINK>. Respond to the user ONLY in <FINAL>...</FINAL>."},
        {"role":"user","content":prompt}
    ]
    text = tok.apply_chat_template(msgs, tokenize=False, add_generation_prompt=True)
    ids = tok(text, return_tensors="pt").to(m.device)
    out = m.generate(**ids, do_sample=True, temperature=0.2, top_p=0.9, max_new_tokens=256)
    return tok.decode(out[0], skip_special_tokens=False)

# ---------- Long-context helpers ----------
def token_chunks(text: str, max_tokens=1600, overlap=200):
    ids = tok.encode(text)
    n = len(ids)
    chunks = []
    i = 0
    k = 0
    while i < n:
        j = min(i + max_tokens, n)
        piece = tok.decode(ids[i:j])
        chunks.append((k, piece))
        if j == n: break
        i = j - overlap
        k += 1
    return chunks

# Prompts specialized for long-context reading
LC_SYS = (
  "You are a careful researcher. Never reveal private thinking. "
  "Use <THINK>..</THINK> for private notes and finish with <FINAL>..</FINAL>."
)

LC_PLAN = (
  "We have a long document. In <THINK>, make a *very brief* reading plan: "
  "key sections to scan and 3–6 questions to answer. Keep under 120 tokens.\n<THINK>\n"
)

LC_EXTRACT = """You are reading chunk #[{cid}] of a long document.

<CHUNK>
{chunk}
</CHUNK>

In <THINK> (≤150 tokens), extract only high-signal facts, numbers, names, dates, definitions
that help answer: "{query}". Prefix each item with [#{cid}] for citation.
Avoid repetition and opinions. Then stop.
<THINK>
"""

LC_MERGE = """You have private notes collected from multiple chunks:

<NOTES>
{notes}
</NOTES>

In <THINK> (≤{memo_budget} tokens), merge, deduplicate, and compress into a GLOBAL MEMO.
Keep only essential facts helpful to answer "{query}". Preserve [#chunk] citations on each fact.
Return ONLY the memo inside <THINK>..</THINK>.
<THINK>
"""

LC_FINAL = """Using the GLOBAL MEMO below, produce a final answer to: "{query}".
Keep it concise, and include bracketed citations like [#3,#5] on claims.

<GLOBAL_MEMO>
{memo}
</GLOBAL_MEMO>

Return ONLY inside <FINAL>..</FINAL>.
<FINAL>
"""

def _gen_llm(prompt, temperature=0.2, top_p=0.9, max_tokens=256, stop=None):
    sp = SamplingParams(temperature=temperature, top_p=top_p, max_tokens=max_tokens,
                        stop=stop or ["</THINK>", "</FINAL>"])
    return llm.generate([prompt], sp)[0].outputs[0].text.strip()

def lc_apply_chat(system, user):
    return tok.apply_chat_template(
        [{"role":"system","content":system},{"role":"user","content":user}],
        tokenize=False, add_generation_prompt=True
    )

def longcontext_answer(query: str, doc_text: str,
                       chunk_tokens=1600, overlap=200,
                       n_plan_samples=2,
                       extract_temp=0.2, merge_temp=0.2, final_temp=0.2,
                       memo_budget=400):
    # 0) Plan (optionally pick best of a few)
    plan_samples = []
    for _ in range(n_plan_samples):
        plan_prompt = lc_apply_chat(LC_SYS, LC_PLAN)
        plan_samples.append(_gen_llm(plan_prompt, temperature=0.7, top_p=0.95, max_tokens=160, stop=["</THINK>"]))
    plan = max(plan_samples, key=len)

    # 1) Chunk the document
    chunks = token_chunks(doc_text, max_tokens=chunk_tokens, overlap=overlap)

    # 2) Per-chunk extraction (low temperature, short think)
    notes = []
    for cid, chunk in chunks:
        user = LC_EXTRACT.format(cid=cid, chunk=chunk, query=query)
        prompt = lc_apply_chat(LC_SYS, user)
        note = _gen_llm(prompt, temperature=extract_temp, top_p=0.9, max_tokens=180, stop=["</THINK>"])
        if note:
            notes.append(note)

    # 3) Merge into a GLOBAL MEMO (bounded)
    merged_prompt = lc_apply_chat(LC_SYS, LC_MERGE.format(notes="\n".join(notes),
                                                          query=query, memo_budget=memo_budget))
    memo = _gen_llm(merged_prompt, temperature=merge_temp, top_p=0.9, max_tokens=memo_budget, stop=["</THINK>"])

    # 4) Finalize with citations
    final_prompt = lc_apply_chat(LC_SYS, LC_FINAL.format(memo=memo, query=query))
    final_answer = _gen_llm(final_prompt, temperature=final_temp, top_p=0.9, max_tokens=512, stop=["</FINAL>"])

    # Debug payload (optional)
    debug = {
        "plan": plan,
        "n_chunks": len(chunks),
        "first_3_notes": notes[:3],
        "memo_tokens": len(tok.encode(memo)),
    }
    return final_answer, debug


# ---------- Gradio UI ----------
with gr.Blocks() as demo:
    gr.Markdown("## 3B Thinking — Train • Merge • Push (Space)")

    with gr.Row():
        base_inp = gr.Textbox(label="BASE", value=BASE)
        out_repo_inp = gr.Textbox(label="OUT_REPO (your-username/repo)", value=OUT_REPO)

    log = gr.Markdown(visible=True, value="Ready.")

    with gr.Tab("1) Build Dataset"):
        build_btn = gr.Button("Build blend (train/eval)")
        build_btn.click(lambda: _ok(build_blend()), outputs=log)

    with gr.Tab("2) Train LoRA (QLoRA)"):
        epochs = gr.Slider(1, 3, step=1, value=2, label="epochs")
        lr = gr.Slider(1e-5, 5e-4, step=1e-5, value=2e-4, label="learning_rate")
        lora_r = gr.Slider(8, 64, step=8, value=32, label="LoRA r")
        lora_alpha = gr.Slider(8, 64, step=2, value=16, label="LoRA alpha")
        lora_dropout = gr.Slider(0.0, 0.2, step=0.01, value=0.05, label="LoRA dropout")
        max_len = gr.Slider(1024, 4096, step=128, value=3072, label="max_seq_length")
        train_btn = gr.Button("Train LoRA")
        train_btn.click(
            lambda b,e,l,rr,aa,dd,ml: _ok(train_lora(b, "thinking3b-lora", e, l, rr, aa, dd, ml)),
            inputs=[base_inp, epochs, lr, lora_r, lora_alpha, lora_dropout, max_len],
            outputs=log
        )

    with gr.Tab("3) Merge Weights"):
        merge_btn = gr.Button("Merge LoRA → full")
        merge_btn.click(lambda b: _ok(merge_lora(b, "thinking3b-lora", "thinking3b-merged")),
                        inputs=[base_inp], outputs=log)

    with gr.Tab("4) Push to Hub"):
        push_btn = gr.Button("Push merged to OUT_REPO")
        push_btn.click(lambda r: _ok(push_to_hub(r, "thinking3b-merged")),
                       inputs=[out_repo_inp], outputs=log)

    with gr.Tab("Smoke Test"):
        prompt = gr.Textbox(value="Give 3 crisp bullets explaining CRDTs.", label="Prompt")
        test_btn = gr.Button("Run on merged model")
        out_text = gr.Textbox(label="Raw decode")
        test_btn.click(lambda p: smoke_run("thinking3b-merged", p), inputs=[prompt], outputs=[out_text])
    
    with gr.Tab("Long-Context QA"):
    q_lc = gr.Textbox(label="Question / Task", lines=3, placeholder="Your question…")
    doc = gr.Textbox(label="Long document / context", lines=18, placeholder="Paste long text here…")

    with gr.Row():
        max_tok = gr.Slider(800, 2400, value=1600, step=100, label="chunk_tokens")
        overlap = gr.Slider(100, 400, value=200, step=50, label="overlap")
        memo = gr.Slider(200, 800, value=400, step=50, label="memo_budget")
    with gr.Row():
        nplan = gr.Slider(1, 3, value=2, step=1, label="plan samples")
        t_ext = gr.Slider(0.1, 0.6, value=0.2, step=0.05, label="extract temp")
        t_fin = gr.Slider(0.1, 0.5, value=0.2, step=0.05, label="final temp")

    run_lc = gr.Button("Run Long-Context")
    out_lc = gr.Textbox(label="Answer (with citations)", lines=10)
    dbg_lc = gr.JSON(label="Debug (plan, memo size, #chunks)")

    def _lc_run(query, text, ct, ov, mb, np, te, tf):
        ans, info = longcontext_answer(
            query, text, chunk_tokens=int(ct), overlap=int(ov),
            n_plan_samples=int(np), extract_temp=float(te), final_temp=float(tf),
            memo_budget=int(mb)
        )
        return ans, info

    run_lc.click(_lc_run,
                 inputs=[q_lc, doc, max_tok, overlap, memo, nplan, t_ext, t_fin],
                 outputs=[out_lc, dbg_lc])


if __name__ == "__main__":
    demo.launch()