Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,40 +3,33 @@ import torch
|
|
| 3 |
import numpy as np
|
| 4 |
import modin.pandas as pd
|
| 5 |
from PIL import Image
|
| 6 |
-
from diffusers import
|
| 7 |
from huggingface_hub import hf_hub_download
|
| 8 |
|
| 9 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 10 |
torch.cuda.max_memory_allocated(device=device)
|
| 11 |
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed):
|
| 14 |
generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
torch.cuda.empty_cache()
|
| 24 |
-
return image
|
| 25 |
-
|
| 26 |
-
if Model == "Animagine XL 4":
|
| 27 |
-
animagine = DiffusionPipeline.from_pretrained("cagliostrolab/animagine-xl-4.0", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("cagliostrolab/animagine-xl-4.0")
|
| 28 |
-
animagine.enable_xformers_memory_efficient_attention()
|
| 29 |
-
animagine = animagine.to(device)
|
| 30 |
-
torch.cuda.empty_cache()
|
| 31 |
-
|
| 32 |
-
image = animagine(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
| 33 |
-
torch.cuda.empty_cache()
|
| 34 |
-
return image
|
| 35 |
|
| 36 |
return image
|
| 37 |
|
| 38 |
-
gr.Interface(fn=genie, inputs=[gr.
|
| 39 |
-
gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
|
| 40 |
gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
|
| 41 |
gr.Slider(512, 1024, 768, step=128, label='Height'),
|
| 42 |
gr.Slider(512, 1024, 768, step=128, label='Width'),
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
import modin.pandas as pd
|
| 5 |
from PIL import Image
|
| 6 |
+
from diffusers import FluxPipeline #CogView4Pipeline #, StableDiffusion3Pipeline from diffusers import CogView4Pipeline
|
| 7 |
from huggingface_hub import hf_hub_download
|
| 8 |
|
| 9 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 10 |
torch.cuda.max_memory_allocated(device=device)
|
| 11 |
torch.cuda.empty_cache()
|
| 12 |
+
pipe = CogView4Pipeline.from_pretrained("THUDM/CogView4-6B", torch_dtype=torch.bfloat16)
|
| 13 |
+
|
| 14 |
+
# Open it for reduce GPU memory usage
|
| 15 |
+
pipe.enable_model_cpu_offload()
|
| 16 |
+
pipe.vae.enable_slicing()
|
| 17 |
+
pipe.vae.enable_tiling()
|
| 18 |
|
| 19 |
def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed):
|
| 20 |
generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
|
| 21 |
|
| 22 |
+
image = pipe(
|
| 23 |
+
prompt=Prompt, negative_prompt=negative_prompt,
|
| 24 |
+
guidance_scale=scale,
|
| 25 |
+
num_images_per_prompt=1,
|
| 26 |
+
num_inference_steps=steps,
|
| 27 |
+
width=width,
|
| 28 |
+
height=height,).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
return image
|
| 31 |
|
| 32 |
+
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
|
|
|
|
| 33 |
gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
|
| 34 |
gr.Slider(512, 1024, 768, step=128, label='Height'),
|
| 35 |
gr.Slider(512, 1024, 768, step=128, label='Width'),
|