Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import numpy as np | |
| import torch | |
| from PIL import Image | |
| from segment_anything import SamPredictor, sam_model_registry, SamAutomaticMaskGenerator | |
| from transformers import pipeline | |
| import colorsys | |
| sam_checkpoint = "sam_vit_h_4b8939.pth" | |
| model_type = "vit_h" | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| #sam = sam_model_registry[model_type](checkpoint=sam_checkpoint) | |
| #sam.to(device=device) | |
| #predictor = SamPredictor(sam) | |
| #mask_generator = SamAutomaticMaskGenerator(sam) | |
| generator = pipeline(model="facebook/sam-vit-base", task="mask-generation", points_per_batch=256) | |
| #image_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" | |
| # controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( | |
| # "SAMControlNet/sd-controlnet-sam-seg", dtype=jnp.float32 | |
| # ) | |
| # pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( | |
| # "runwayml/stable-diffusion-v1-5", | |
| # controlnet=controlnet, | |
| # revision="flax", | |
| # dtype=jnp.bfloat16, | |
| # ) | |
| # params["controlnet"] = controlnet_params | |
| # p_params = replicate(params) | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Ahsans version WildSynth: Synthetic Wildlife Data Generation") | |
| gr.Markdown( | |
| """ | |
| ## Work in Progress | |
| ### About | |
| ### How To Use | |
| """ | |
| ) | |
| with gr.Row(): | |
| input_img = gr.Image(label="Input", type="pil") | |
| mask_img = gr.Image(label="Mask", interactive=False) | |
| output_img = gr.Image(label="Output", interactive=False) | |
| with gr.Row(): | |
| submit = gr.Button("Submit") | |
| clear = gr.Button("Clear") | |
| def generate_mask(image): | |
| outputs = generator(image, points_per_batch=256) | |
| mask_images = [] | |
| #for mask in outputs["masks"]: | |
| # color = np.concatenate([np.random.random(3), np.array([1.0])], axis=0) | |
| # h, w = mask.shape[-2:] | |
| # mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) | |
| # np_img = mask_image; | |
| # np_img = np.squeeze(np_img, axis=2) # axis=2 is channel dimension | |
| # pil_img = Image.fromarray(np_img, 'RGB') | |
| # mask_images.append(pil_img) | |
| #return np.stack(mask_images) | |
| return image | |
| # def infer( | |
| # image, prompts, negative_prompts, num_inference_steps=50, seed=4, num_samples=4 | |
| # ): | |
| # try: | |
| # rng = jax.random.PRNGKey(int(seed)) | |
| # num_inference_steps = int(num_inference_steps) | |
| # image = Image.fromarray(image, mode="RGB") | |
| # num_samples = max(jax.device_count(), int(num_samples)) | |
| # p_rng = jax.random.split(rng, jax.device_count()) | |
| # prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) | |
| # negative_prompt_ids = pipe.prepare_text_inputs( | |
| # [negative_prompts] * num_samples | |
| # ) | |
| # processed_image = pipe.prepare_image_inputs([image] * num_samples) | |
| # prompt_ids = shard(prompt_ids) | |
| # negative_prompt_ids = shard(negative_prompt_ids) | |
| # processed_image = shard(processed_image) | |
| # output = pipe( | |
| # prompt_ids=prompt_ids, | |
| # image=processed_image, | |
| # params=p_params, | |
| # prng_seed=p_rng, | |
| # num_inference_steps=num_inference_steps, | |
| # neg_prompt_ids=negative_prompt_ids, | |
| # jit=True, | |
| # ).images | |
| # del negative_prompt_ids | |
| # del processed_image | |
| # del prompt_ids | |
| # output = output.reshape((num_samples,) + output.shape[-3:]) | |
| # final_image = [np.array(x * 255, dtype=np.uint8) for x in output] | |
| # print(output.shape) | |
| # del output | |
| # except Exception as e: | |
| # print("Error: " + str(e)) | |
| # final_image = [np.zeros((512, 512, 3), dtype=np.uint8)] * num_samples | |
| # finally: | |
| # gc.collect() | |
| # return final_image | |
| # def _clear(sel_pix, img, mask, seg, out, prompt, neg_prompt, bg): | |
| # img = None | |
| # mask = None | |
| # seg = None | |
| # out = None | |
| # prompt = "" | |
| # neg_prompt = "" | |
| # bg = False | |
| # return img, mask, seg, out, prompt, neg_prompt, bg | |
| input_img.change( | |
| generate_mask, | |
| inputs=[input_img], | |
| outputs=[mask_img], | |
| ) | |
| # submit.click( | |
| # infer, | |
| # inputs=[mask_img, prompt_text, negative_prompt_text], | |
| # outputs=[output_img], | |
| # ) | |
| # clear.click( | |
| # _clear, | |
| # inputs=[ | |
| # input_img, | |
| # mask_img, | |
| # output_img, | |
| # prompt_text, | |
| # negative_prompt_text, | |
| # ], | |
| # outputs=[ | |
| # input_img, | |
| # mask_img, | |
| # output_img, | |
| # prompt_text, | |
| # negative_prompt_text, | |
| # ], | |
| # ) | |
| if __name__ == "__main__": | |
| demo.queue() | |
| demo.launch() |