Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import yolov5 | |
| import cv2 | |
| import numpy as np | |
| from PIL import Image | |
| def load_model(): | |
| model = yolov5.load('keremberke/yolov5n-license-plate') | |
| model.conf = 0.25 | |
| model.iou = 0.45 | |
| return model | |
| def main(): | |
| st.title("Detección de placas con YOLOv5") | |
| st.write("Sube una imagen para detectar placas.") | |
| uploaded_file = st.file_uploader("Selecciona una imagen", type=["jpg", "jpeg", "png"]) | |
| model = load_model() | |
| if uploaded_file is not None: | |
| image = Image.open(uploaded_file).convert("RGB") | |
| img_array = np.array(image) | |
| # Inferencia | |
| results = model(img_array, size=640) | |
| # Mostrar resultados | |
| results.render() # dibuja cajas en img_array | |
| st.image(img_array, caption="Resultado de detección", use_column_width=True) | |
| # Mostrar texto detectado (categorías y scores) | |
| detections = results.pred[0] | |
| if len(detections) == 0: | |
| st.write("No se detectaron placas.") | |
| else: | |
| for *box, conf, cls in detections.cpu().numpy(): | |
| st.write(f"Placa detectada con confianza {conf:.2f}") | |
| if __name__ == "__main__": | |
| main() | |