Myloiose commited on
Commit
6b05da6
·
verified ·
1 Parent(s): 4bf422b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -10
app.py CHANGED
@@ -1,12 +1,11 @@
1
  import streamlit as st
2
  from PIL import Image
3
- import torch
4
- import cv2
5
  import numpy as np
 
6
 
7
  @st.cache_resource(show_spinner=False)
8
  def load_model():
9
- model = torch.hub.load('ultralytics/yolov5', 'custom', path='yolov5n-license-plate.pt', force_reload=True)
10
  model.conf = 0.25
11
  model.iou = 0.45
12
  return model
@@ -20,23 +19,26 @@ def main():
20
  st.info("Por favor sube una imagen.")
21
  return
22
 
23
- model = load_model()
24
  image = Image.open(img_file).convert("RGB")
 
 
 
 
25
  img = np.array(image)
26
 
27
  results = model(img, size=640)
28
- results.render()
29
 
30
- annotated = results.ims[0]
31
- st.image(annotated, caption="Resultado de detección", use_column_width=True)
32
 
 
33
  detections = results.pred[0]
34
  if detections is None or len(detections) == 0:
35
- st.warning("No se detectaron placas.")
36
  else:
37
- st.success(f"Se detectaron {len(detections)} objeto(s) con placa.")
38
  for *box, conf, cls in detections.cpu().numpy():
39
- st.write(f" Confianza: {conf:.2f}")
40
 
41
  if __name__ == "__main__":
42
  main()
 
1
  import streamlit as st
2
  from PIL import Image
 
 
3
  import numpy as np
4
+ import yolov5
5
 
6
  @st.cache_resource(show_spinner=False)
7
  def load_model():
8
+ model = yolov5.load('keremberke/yolov5n-license-plate')
9
  model.conf = 0.25
10
  model.iou = 0.45
11
  return model
 
19
  st.info("Por favor sube una imagen.")
20
  return
21
 
 
22
  image = Image.open(img_file).convert("RGB")
23
+ st.image(image, caption="Imagen original", use_column_width=True)
24
+
25
+ model = load_model()
26
+
27
  img = np.array(image)
28
 
29
  results = model(img, size=640)
 
30
 
31
+ results.render()
32
+ st.image(results.ims[0], caption="Resultado con detecciones", use_column_width=True)
33
 
34
+
35
  detections = results.pred[0]
36
  if detections is None or len(detections) == 0:
37
+ st.warning("No se detectaron matrículas.")
38
  else:
39
+ st.success(f"Se detectaron {len(detections)} matrícula(s):")
40
  for *box, conf, cls in detections.cpu().numpy():
41
+ st.write(f"📍 Confianza: {conf:.2f}")
42
 
43
  if __name__ == "__main__":
44
  main()