Spaces:
Running
Running
Deploy optimized Wan2.2 video generation with Zero GPU support
Browse files- .gitignore +66 -0
- DEPLOYMENT.md +285 -0
- README.md +130 -6
- app.py +296 -0
- requirements.txt +38 -0
.gitignore
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
*.so
|
| 6 |
+
.Python
|
| 7 |
+
build/
|
| 8 |
+
develop-eggs/
|
| 9 |
+
dist/
|
| 10 |
+
downloads/
|
| 11 |
+
eggs/
|
| 12 |
+
.eggs/
|
| 13 |
+
lib/
|
| 14 |
+
lib64/
|
| 15 |
+
parts/
|
| 16 |
+
sdist/
|
| 17 |
+
var/
|
| 18 |
+
wheels/
|
| 19 |
+
*.egg-info/
|
| 20 |
+
.installed.cfg
|
| 21 |
+
*.egg
|
| 22 |
+
|
| 23 |
+
# Virtual environments
|
| 24 |
+
venv/
|
| 25 |
+
env/
|
| 26 |
+
ENV/
|
| 27 |
+
.venv
|
| 28 |
+
|
| 29 |
+
# IDE
|
| 30 |
+
.vscode/
|
| 31 |
+
.idea/
|
| 32 |
+
*.swp
|
| 33 |
+
*.swo
|
| 34 |
+
*~
|
| 35 |
+
|
| 36 |
+
# OS
|
| 37 |
+
.DS_Store
|
| 38 |
+
Thumbs.db
|
| 39 |
+
|
| 40 |
+
# Gradio
|
| 41 |
+
gradio_cached_examples/
|
| 42 |
+
flagged/
|
| 43 |
+
|
| 44 |
+
# Model outputs
|
| 45 |
+
output.mp4
|
| 46 |
+
*.mp4
|
| 47 |
+
*.avi
|
| 48 |
+
*.mov
|
| 49 |
+
outputs/
|
| 50 |
+
|
| 51 |
+
# Hugging Face cache
|
| 52 |
+
.cache/
|
| 53 |
+
models/
|
| 54 |
+
|
| 55 |
+
# Environment variables
|
| 56 |
+
.env
|
| 57 |
+
.env.local
|
| 58 |
+
|
| 59 |
+
# Logs
|
| 60 |
+
logs/
|
| 61 |
+
*.log
|
| 62 |
+
|
| 63 |
+
# Temporary files
|
| 64 |
+
tmp/
|
| 65 |
+
temp/
|
| 66 |
+
*.tmp
|
DEPLOYMENT.md
ADDED
|
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Deployment Guide for Wan2.2 on Hugging Face Spaces
|
| 2 |
+
|
| 3 |
+
This guide explains how to deploy the Wan2.2 video generation model to Hugging Face Spaces with Zero GPU support.
|
| 4 |
+
|
| 5 |
+
## Prerequisites
|
| 6 |
+
|
| 7 |
+
1. A Hugging Face account (create one at https://huggingface.co/join)
|
| 8 |
+
2. Git installed on your local machine
|
| 9 |
+
3. Git LFS (Large File Storage) installed
|
| 10 |
+
|
| 11 |
+
## Deployment Steps
|
| 12 |
+
|
| 13 |
+
### Option 1: Deploy via Hugging Face Web Interface
|
| 14 |
+
|
| 15 |
+
1. **Create a New Space**
|
| 16 |
+
- Go to https://huggingface.co/new-space
|
| 17 |
+
- Choose a name for your Space (e.g., "wan2-video-gen")
|
| 18 |
+
- Select "Gradio" as the SDK
|
| 19 |
+
- Choose "Public" or "Private" visibility
|
| 20 |
+
- Click "Create Space"
|
| 21 |
+
|
| 22 |
+
2. **Upload Files**
|
| 23 |
+
- Use the web interface to upload files:
|
| 24 |
+
- `app.py`
|
| 25 |
+
- `requirements.txt`
|
| 26 |
+
- `README.md`
|
| 27 |
+
- `.gitignore`
|
| 28 |
+
|
| 29 |
+
3. **Enable Zero GPU**
|
| 30 |
+
- In your Space settings, enable "Zero GPU"
|
| 31 |
+
- This provides automatic GPU allocation during inference
|
| 32 |
+
|
| 33 |
+
4. **Wait for Build**
|
| 34 |
+
- Hugging Face will automatically build your Space
|
| 35 |
+
- This may take 10-15 minutes for the first build
|
| 36 |
+
- Check the build logs for any errors
|
| 37 |
+
|
| 38 |
+
### Option 2: Deploy via Git (Recommended)
|
| 39 |
+
|
| 40 |
+
1. **Clone Your Space**
|
| 41 |
+
```bash
|
| 42 |
+
git clone https://huggingface.co/spaces/YOUR_USERNAME/YOUR_SPACE_NAME
|
| 43 |
+
cd YOUR_SPACE_NAME
|
| 44 |
+
```
|
| 45 |
+
|
| 46 |
+
2. **Copy Files**
|
| 47 |
+
```bash
|
| 48 |
+
# Copy all files from huggingface-wan2.2 directory
|
| 49 |
+
cp /path/to/huggingface-wan2.2/* .
|
| 50 |
+
```
|
| 51 |
+
|
| 52 |
+
3. **Commit and Push**
|
| 53 |
+
```bash
|
| 54 |
+
git add .
|
| 55 |
+
git commit -m "Initial deployment of Wan2.2 video generation"
|
| 56 |
+
git push
|
| 57 |
+
```
|
| 58 |
+
|
| 59 |
+
4. **Enable Zero GPU**
|
| 60 |
+
- Go to your Space settings on Hugging Face
|
| 61 |
+
- Navigate to "Settings" → "Zero GPU"
|
| 62 |
+
- Enable Zero GPU support
|
| 63 |
+
|
| 64 |
+
### Option 3: Deploy from This Repository
|
| 65 |
+
|
| 66 |
+
If you've already cloned this repository:
|
| 67 |
+
|
| 68 |
+
```bash
|
| 69 |
+
cd /home/user/Kakka/huggingface-wan2.2
|
| 70 |
+
|
| 71 |
+
# Initialize git if not already done
|
| 72 |
+
git init
|
| 73 |
+
|
| 74 |
+
# Add Hugging Face Space as remote
|
| 75 |
+
git remote add hf https://huggingface.co/spaces/YOUR_USERNAME/YOUR_SPACE_NAME
|
| 76 |
+
|
| 77 |
+
# Commit files
|
| 78 |
+
git add .
|
| 79 |
+
git commit -m "Initial deployment of Wan2.2 video generation"
|
| 80 |
+
|
| 81 |
+
# Push to Hugging Face
|
| 82 |
+
git push hf main
|
| 83 |
+
```
|
| 84 |
+
|
| 85 |
+
## Configuration
|
| 86 |
+
|
| 87 |
+
### Zero GPU Settings
|
| 88 |
+
|
| 89 |
+
The app is configured to use Zero GPU with the following settings:
|
| 90 |
+
- **Duration**: 180 seconds (3 minutes) per generation
|
| 91 |
+
- **Allocation**: Automatic (triggered by generation request)
|
| 92 |
+
- **Optimized defaults**: Reduced frames (73) and steps (35) to fit within time limit
|
| 93 |
+
|
| 94 |
+
This is configured in `app.py` with the decorator:
|
| 95 |
+
```python
|
| 96 |
+
@spaces.GPU(duration=180) # 3 minutes max for Pro accounts
|
| 97 |
+
```
|
| 98 |
+
|
| 99 |
+
**Important**: Even with Pro subscription, the maximum GPU duration is limited to 180 seconds (3 minutes). The default settings have been optimized to complete generation within this time:
|
| 100 |
+
- Default frames: 73 (3 seconds of video at 24fps)
|
| 101 |
+
- Default inference steps: 35 (balanced speed/quality)
|
| 102 |
+
- Maximum frames slider: 145 (6 seconds)
|
| 103 |
+
- Maximum inference steps: 60
|
| 104 |
+
|
| 105 |
+
### Memory Requirements
|
| 106 |
+
|
| 107 |
+
The Wan2.2-TI2V-5B model requires:
|
| 108 |
+
- **Minimum**: 24GB VRAM
|
| 109 |
+
- **Recommended**: 40GB+ VRAM for Zero GPU
|
| 110 |
+
|
| 111 |
+
Zero GPU on Hugging Face Spaces provides sufficient VRAM for this model (H200 GPU with 70GB).
|
| 112 |
+
|
| 113 |
+
## Testing Your Deployment
|
| 114 |
+
|
| 115 |
+
1. **Wait for Build to Complete**
|
| 116 |
+
- Check the build logs in your Space
|
| 117 |
+
- Wait for "Running" status
|
| 118 |
+
|
| 119 |
+
2. **Test Basic Generation**
|
| 120 |
+
- Try the default example: "Two anthropomorphic cats in comfy boxing gear fight on stage"
|
| 121 |
+
- Generation should take 5-10 minutes
|
| 122 |
+
|
| 123 |
+
3. **Test Image-to-Video**
|
| 124 |
+
- Upload a test image
|
| 125 |
+
- Add a descriptive prompt
|
| 126 |
+
- Verify video generation works
|
| 127 |
+
|
| 128 |
+
## Troubleshooting
|
| 129 |
+
|
| 130 |
+
### Critical: Import Order Issue
|
| 131 |
+
|
| 132 |
+
**Issue**: `RuntimeError: CUDA has been initialized before importing the 'spaces' package`
|
| 133 |
+
|
| 134 |
+
**Solution**: This is CRITICAL! The `spaces` package MUST be imported BEFORE any CUDA-related packages (torch, diffusers, etc.)
|
| 135 |
+
|
| 136 |
+
**Correct import order in app.py:**
|
| 137 |
+
```python
|
| 138 |
+
# IMPORTANT: spaces must be imported first
|
| 139 |
+
import spaces
|
| 140 |
+
|
| 141 |
+
# Standard library imports
|
| 142 |
+
import os
|
| 143 |
+
|
| 144 |
+
# Third-party imports (non-CUDA)
|
| 145 |
+
import numpy as np
|
| 146 |
+
from PIL import Image
|
| 147 |
+
import gradio as gr
|
| 148 |
+
|
| 149 |
+
# CUDA-related imports (must come after spaces)
|
| 150 |
+
import torch
|
| 151 |
+
from diffusers import WanPipeline, AutoencoderKLWan
|
| 152 |
+
```
|
| 153 |
+
|
| 154 |
+
**Why this matters**: Hugging Face Zero GPU needs to manage CUDA initialization. If torch or other CUDA libraries initialize CUDA before `spaces` is imported, Zero GPU cannot properly manage GPU allocation.
|
| 155 |
+
|
| 156 |
+
### Build Fails
|
| 157 |
+
|
| 158 |
+
**Issue**: Requirements installation fails
|
| 159 |
+
- **Solution**: Check `requirements.txt` for compatibility issues
|
| 160 |
+
- Ensure PyTorch version is compatible with CUDA on Zero GPU
|
| 161 |
+
- Make sure using latest Gradio version (5.49.0+) for security
|
| 162 |
+
|
| 163 |
+
**Issue**: Out of memory during build
|
| 164 |
+
- **Solution**: Zero GPU should have enough memory; check model loading code
|
| 165 |
+
|
| 166 |
+
**Issue**: "Can't initialize NVML" warnings
|
| 167 |
+
- **Solution**: These are normal in Zero GPU environment during build time
|
| 168 |
+
- They should not affect runtime when GPU is allocated
|
| 169 |
+
|
| 170 |
+
### Runtime Errors
|
| 171 |
+
|
| 172 |
+
**Issue**: "CUDA out of memory"
|
| 173 |
+
- **Solution**: Reduce `num_frames` or image resolution
|
| 174 |
+
- Check if Zero GPU is properly enabled in settings
|
| 175 |
+
|
| 176 |
+
**Issue**: "Model not found"
|
| 177 |
+
- **Solution**: Verify internet connection for model download
|
| 178 |
+
- Check Hugging Face Hub status
|
| 179 |
+
|
| 180 |
+
**Issue**: Generation timeout
|
| 181 |
+
- **Solution**: Reduce inference steps or video length
|
| 182 |
+
- Increase GPU duration in `@spaces.GPU(duration=XX)`
|
| 183 |
+
|
| 184 |
+
**Issue**: Gradio security vulnerability warning
|
| 185 |
+
- **Solution**: Update to Gradio 5.49.0 or later in requirements.txt
|
| 186 |
+
- Check README.md YAML front matter has correct `sdk_version: 5.49.0`
|
| 187 |
+
|
| 188 |
+
**Issue**: "ZeroGPU illegal duration! The requested GPU duration (Xs) is larger than the maximum allowed"
|
| 189 |
+
- **Solution**: Reduce the duration parameter in `@spaces.GPU(duration=XX)`
|
| 190 |
+
- For Pro accounts, use 180 seconds or less: `@spaces.GPU(duration=180)`
|
| 191 |
+
- Free tier typically limited to 60 seconds
|
| 192 |
+
- Optimize your default settings to complete within the time limit:
|
| 193 |
+
- Reduce `num_frames` (e.g., 73 for 3 seconds instead of 121 for 5 seconds)
|
| 194 |
+
- Reduce `num_inference_steps` (e.g., 35 instead of 50)
|
| 195 |
+
|
| 196 |
+
### Slow Generation
|
| 197 |
+
|
| 198 |
+
**Issue**: Generation takes too long
|
| 199 |
+
- **Solution**: This is expected; video generation is compute-intensive
|
| 200 |
+
- Typical time: 2-3 minutes for 3-second video with optimized settings (73 frames, 35 steps)
|
| 201 |
+
- Consider reducing `num_inference_steps` to 25-30 for faster (but lower quality) results
|
| 202 |
+
- Note: Must complete within 180 seconds (3 minutes) for Pro, 60 seconds for Free tier
|
| 203 |
+
|
| 204 |
+
## Optimization Tips
|
| 205 |
+
|
| 206 |
+
1. **Current Optimized Settings**
|
| 207 |
+
- Already optimized: `num_frames=73` (3 seconds) and `num_inference_steps=35`
|
| 208 |
+
- These settings are designed to complete within 180-second Zero GPU limit
|
| 209 |
+
- For even faster testing, reduce steps to 25-30
|
| 210 |
+
|
| 211 |
+
2. **Add Caching (Optional)**
|
| 212 |
+
- Enable example caching with `cache_examples=True` to pre-generate examples
|
| 213 |
+
- Note: This increases build time and storage requirements
|
| 214 |
+
- Current setting: `cache_examples=False` for faster builds
|
| 215 |
+
|
| 216 |
+
3. **Queue Management**
|
| 217 |
+
- Current setting: `demo.queue(max_size=20)`
|
| 218 |
+
- Adjust based on expected traffic
|
| 219 |
+
- Larger queue = more concurrent users but more resource usage
|
| 220 |
+
|
| 221 |
+
## Customization
|
| 222 |
+
|
| 223 |
+
### Change Default Model
|
| 224 |
+
|
| 225 |
+
To use a different Wan2.2 variant, modify `app.py`:
|
| 226 |
+
|
| 227 |
+
```python
|
| 228 |
+
# For larger model with better quality
|
| 229 |
+
MODEL_ID = "Wan-AI/Wan2.2-T2V-A14B-Diffusers"
|
| 230 |
+
|
| 231 |
+
# For image-to-video focused
|
| 232 |
+
MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
|
| 233 |
+
```
|
| 234 |
+
|
| 235 |
+
### Adjust UI
|
| 236 |
+
|
| 237 |
+
Modify the Gradio interface in `app.py`:
|
| 238 |
+
- Change default values in sliders
|
| 239 |
+
- Add more examples
|
| 240 |
+
- Customize theme and styling
|
| 241 |
+
|
| 242 |
+
### Add Features
|
| 243 |
+
|
| 244 |
+
Consider adding:
|
| 245 |
+
- Video upscaling
|
| 246 |
+
- Multiple video outputs
|
| 247 |
+
- Batch generation
|
| 248 |
+
- Download history
|
| 249 |
+
- Custom aspect ratios
|
| 250 |
+
|
| 251 |
+
## Monitoring
|
| 252 |
+
|
| 253 |
+
### Check Space Status
|
| 254 |
+
- Visit your Space URL
|
| 255 |
+
- Check "Settings" → "Logs" for runtime logs
|
| 256 |
+
- Monitor usage in "Settings" → "Analytics"
|
| 257 |
+
|
| 258 |
+
### Usage Limits
|
| 259 |
+
|
| 260 |
+
Zero GPU on Hugging Face has:
|
| 261 |
+
- Time limits per session
|
| 262 |
+
- Concurrent user limits
|
| 263 |
+
- Monthly compute quotas (check your tier)
|
| 264 |
+
|
| 265 |
+
## Support
|
| 266 |
+
|
| 267 |
+
If you encounter issues:
|
| 268 |
+
|
| 269 |
+
1. **Check Logs**: Space logs often contain error details
|
| 270 |
+
2. **Hugging Face Forums**: https://discuss.huggingface.co/
|
| 271 |
+
3. **Model Issues**: Report at Wan-AI's GitHub or model card
|
| 272 |
+
4. **Space Settings**: Verify Zero GPU is enabled and quota is available
|
| 273 |
+
|
| 274 |
+
## License
|
| 275 |
+
|
| 276 |
+
This deployment uses:
|
| 277 |
+
- Wan2.2 model (Apache 2.0)
|
| 278 |
+
- Gradio (Apache 2.0)
|
| 279 |
+
- Diffusers (Apache 2.0)
|
| 280 |
+
|
| 281 |
+
Ensure compliance with all licenses when deploying.
|
| 282 |
+
|
| 283 |
+
---
|
| 284 |
+
|
| 285 |
+
**Happy Deploying!** 🚀
|
README.md
CHANGED
|
@@ -1,12 +1,136 @@
|
|
| 1 |
---
|
| 2 |
-
title: Wan2 Video Generation
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 5.49.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Wan2.2 Video Generation
|
| 3 |
+
emoji: 🎥
|
| 4 |
+
colorFrom: purple
|
| 5 |
+
colorTo: pink
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 5.49.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
license: apache-2.0
|
| 11 |
+
tags:
|
| 12 |
+
- video-generation
|
| 13 |
+
- text-to-video
|
| 14 |
+
- image-to-video
|
| 15 |
+
- diffusers
|
| 16 |
+
- wan
|
| 17 |
+
- ai-video
|
| 18 |
+
- zero-gpu
|
| 19 |
+
python_version: "3.10"
|
| 20 |
---
|
| 21 |
|
| 22 |
+
# Wan2.2 Video Generation 🎥
|
| 23 |
+
|
| 24 |
+
Generate high-quality videos from text prompts or images using the powerful **Wan2.2-TI2V-5B** model!
|
| 25 |
+
|
| 26 |
+
This Space provides an easy-to-use interface for creating videos with state-of-the-art AI technology.
|
| 27 |
+
|
| 28 |
+
## Features ✨
|
| 29 |
+
|
| 30 |
+
- **Text-to-Video**: Generate videos from descriptive text prompts
|
| 31 |
+
- **Image-to-Video**: Animate your images by adding an input image
|
| 32 |
+
- **High Quality**: 720P resolution at 24fps
|
| 33 |
+
- **Customizable**: Adjust resolution, number of frames, guidance scale, and more
|
| 34 |
+
- **Reproducible**: Use seeds to recreate your favorite generations
|
| 35 |
+
|
| 36 |
+
## Model Information 🤖
|
| 37 |
+
|
| 38 |
+
**Wan2.2-TI2V-5B** is a unified text-to-video and image-to-video generation model with:
|
| 39 |
+
|
| 40 |
+
- **5 billion parameters** optimized for consumer-grade GPUs
|
| 41 |
+
- **720P resolution** support (1280x704 default)
|
| 42 |
+
- **24 fps** smooth video output
|
| 43 |
+
- **Optimized duration**: Default 3 seconds (optimized for Zero GPU limits)
|
| 44 |
+
|
| 45 |
+
The model uses a Mixture-of-Experts (MoE) architecture and delivers outstanding video generation quality, surpassing many commercial models.
|
| 46 |
+
|
| 47 |
+
## How to Use 🚀
|
| 48 |
+
|
| 49 |
+
### Text-to-Video Generation
|
| 50 |
+
|
| 51 |
+
1. Enter your prompt describing the video you want to create
|
| 52 |
+
2. Adjust settings in "Advanced Settings" if desired
|
| 53 |
+
3. Click "Generate Video"
|
| 54 |
+
4. Wait for generation (typically 2-3 minutes on Zero GPU with default settings)
|
| 55 |
+
|
| 56 |
+
### Image-to-Video Generation
|
| 57 |
+
|
| 58 |
+
1. Upload an input image
|
| 59 |
+
2. Enter a prompt describing how the image should animate
|
| 60 |
+
3. Click "Generate Video"
|
| 61 |
+
4. The output will maintain the aspect ratio of your input image
|
| 62 |
+
5. Generation takes 2-3 minutes with optimized settings
|
| 63 |
+
|
| 64 |
+
## Advanced Settings ⚙️
|
| 65 |
+
|
| 66 |
+
- **Width/Height**: Video resolution (default: 1280x704)
|
| 67 |
+
- **Number of Frames**: Longer videos need more frames (default: 73 frames ≈ 3 seconds, max: 145)
|
| 68 |
+
- **Inference Steps**: More steps = better quality but slower (default: 35, optimized for speed)
|
| 69 |
+
- **Guidance Scale**: How closely to follow the prompt (default: 5.0)
|
| 70 |
+
- **Seed**: Set a specific seed for reproducible results
|
| 71 |
+
|
| 72 |
+
**Note**: Settings are optimized to complete within Zero GPU's 3-minute time limit for Pro users.
|
| 73 |
+
|
| 74 |
+
## Tips for Best Results 💡
|
| 75 |
+
|
| 76 |
+
1. **Detailed Prompts**: Be specific about what you want to see
|
| 77 |
+
- Good: "Two anthropomorphic cats in comfy boxing gear fight on stage with dramatic lighting"
|
| 78 |
+
- Basic: "cats fighting"
|
| 79 |
+
|
| 80 |
+
2. **Image-to-Video**: Use clear, high-quality input images that match your prompt
|
| 81 |
+
|
| 82 |
+
3. **Quality vs Speed** (optimized for Zero GPU limits):
|
| 83 |
+
- Fast: 25-30 steps (~2 minutes)
|
| 84 |
+
- Balanced: 35 steps (default, ~2-3 minutes)
|
| 85 |
+
- Higher Quality: 40-50 steps (~3+ minutes, may timeout)
|
| 86 |
+
|
| 87 |
+
4. **Experiment**: Try different guidance scales:
|
| 88 |
+
- Lower (3-4): More creative, less literal
|
| 89 |
+
- Default (5): Good balance
|
| 90 |
+
- Higher (7-10): Strictly follows prompt
|
| 91 |
+
|
| 92 |
+
## Example Prompts 📝
|
| 93 |
+
|
| 94 |
+
- "Two anthropomorphic cats in comfy boxing gear fight on stage"
|
| 95 |
+
- "A serene underwater scene with colorful coral reefs and tropical fish swimming gracefully"
|
| 96 |
+
- "A bustling futuristic city at night with neon lights and flying cars"
|
| 97 |
+
- "A peaceful mountain landscape with snow-capped peaks and a flowing river"
|
| 98 |
+
- "An astronaut riding a horse through a nebula in deep space"
|
| 99 |
+
- "A dragon flying over a medieval castle at sunset"
|
| 100 |
+
|
| 101 |
+
## Technical Details 🔧
|
| 102 |
+
|
| 103 |
+
- **Model**: Wan-AI/Wan2.2-TI2V-5B-Diffusers
|
| 104 |
+
- **Framework**: Hugging Face Diffusers
|
| 105 |
+
- **Backend**: PyTorch with bfloat16 precision
|
| 106 |
+
- **GPU**: Hugging Face Zero GPU (H200 with 70GB VRAM, automatically allocated)
|
| 107 |
+
- **GPU Duration**: 180 seconds (3 minutes) for Pro users
|
| 108 |
+
- **Generation Time**: ~2-3 minutes with optimized settings (73 frames, 35 steps)
|
| 109 |
+
|
| 110 |
+
## Limitations ⚠️
|
| 111 |
+
|
| 112 |
+
- Generation requires compute time (2-3 minutes with default settings)
|
| 113 |
+
- Zero GPU allocation is time-limited (3 minutes for Pro, 60 seconds for Free)
|
| 114 |
+
- Videos longer than 6 seconds (145 frames) may timeout
|
| 115 |
+
- Higher quality settings (50+ steps) may timeout on Zero GPU
|
| 116 |
+
- Complex scenes with many objects may be challenging
|
| 117 |
+
|
| 118 |
+
## Credits 🙏
|
| 119 |
+
|
| 120 |
+
- **Model**: [Wan-AI](https://huggingface.co/Wan-AI)
|
| 121 |
+
- **Original Repository**: [Wan2.2](https://github.com/Wan-Video/Wan2.2)
|
| 122 |
+
- **Framework**: [Hugging Face Diffusers](https://github.com/huggingface/diffusers)
|
| 123 |
+
|
| 124 |
+
## License 📄
|
| 125 |
+
|
| 126 |
+
This Space uses the Wan2.2 model which is released under Apache 2.0 license.
|
| 127 |
+
|
| 128 |
+
## Related Links 🔗
|
| 129 |
+
|
| 130 |
+
- [Wan-AI on Hugging Face](https://huggingface.co/Wan-AI)
|
| 131 |
+
- [Original Model Card](https://huggingface.co/Wan-AI/Wan2.2-TI2V-5B-Diffusers)
|
| 132 |
+
- [Diffusers Documentation](https://huggingface.co/docs/diffusers)
|
| 133 |
+
|
| 134 |
+
---
|
| 135 |
+
|
| 136 |
+
**Note**: This is a community-created Space for easy access to Wan2.2 video generation. Generation times may vary based on current GPU availability.
|
app.py
ADDED
|
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# IMPORTANT: spaces must be imported first to avoid CUDA initialization issues
|
| 2 |
+
import spaces
|
| 3 |
+
|
| 4 |
+
# Standard library imports
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
# Third-party imports (non-CUDA)
|
| 8 |
+
import numpy as np
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import gradio as gr
|
| 11 |
+
|
| 12 |
+
# CUDA-related imports (must come after spaces)
|
| 13 |
+
import torch
|
| 14 |
+
from diffusers import WanPipeline, AutoencoderKLWan
|
| 15 |
+
from diffusers.utils import export_to_video
|
| 16 |
+
|
| 17 |
+
# Model configuration
|
| 18 |
+
MODEL_ID = "Wan-AI/Wan2.2-TI2V-5B-Diffusers"
|
| 19 |
+
dtype = torch.bfloat16
|
| 20 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 21 |
+
|
| 22 |
+
# Global pipeline variable
|
| 23 |
+
pipe = None
|
| 24 |
+
|
| 25 |
+
def initialize_pipeline():
|
| 26 |
+
"""Initialize the Wan2.2 pipeline"""
|
| 27 |
+
global pipe
|
| 28 |
+
if pipe is None:
|
| 29 |
+
print("Loading Wan2.2-TI2V-5B model...")
|
| 30 |
+
vae = AutoencoderKLWan.from_pretrained(
|
| 31 |
+
MODEL_ID,
|
| 32 |
+
subfolder="vae",
|
| 33 |
+
torch_dtype=torch.float32
|
| 34 |
+
)
|
| 35 |
+
pipe = WanPipeline.from_pretrained(
|
| 36 |
+
MODEL_ID,
|
| 37 |
+
vae=vae,
|
| 38 |
+
torch_dtype=dtype
|
| 39 |
+
)
|
| 40 |
+
pipe.to(device)
|
| 41 |
+
print("Model loaded successfully!")
|
| 42 |
+
return pipe
|
| 43 |
+
|
| 44 |
+
@spaces.GPU(duration=180) # Allocate GPU for 3 minutes (max allowed for Pro)
|
| 45 |
+
def generate_video(
|
| 46 |
+
prompt: str,
|
| 47 |
+
image: Image.Image = None,
|
| 48 |
+
width: int = 1280,
|
| 49 |
+
height: int = 704,
|
| 50 |
+
num_frames: int = 73,
|
| 51 |
+
num_inference_steps: int = 35,
|
| 52 |
+
guidance_scale: float = 5.0,
|
| 53 |
+
seed: int = -1
|
| 54 |
+
):
|
| 55 |
+
"""
|
| 56 |
+
Generate video from text prompt and optional image
|
| 57 |
+
|
| 58 |
+
Args:
|
| 59 |
+
prompt: Text description of the video to generate
|
| 60 |
+
image: Optional input image for image-to-video generation
|
| 61 |
+
width: Video width (default: 1280)
|
| 62 |
+
height: Video height (default: 704)
|
| 63 |
+
num_frames: Number of frames to generate (default: 73 for 3 seconds at 24fps)
|
| 64 |
+
num_inference_steps: Number of denoising steps (default: 35 for faster generation)
|
| 65 |
+
guidance_scale: Guidance scale for generation (default: 5.0)
|
| 66 |
+
seed: Random seed for reproducibility (-1 for random)
|
| 67 |
+
"""
|
| 68 |
+
try:
|
| 69 |
+
# Initialize pipeline
|
| 70 |
+
pipeline = initialize_pipeline()
|
| 71 |
+
|
| 72 |
+
# Set seed for reproducibility
|
| 73 |
+
if seed == -1:
|
| 74 |
+
seed = torch.randint(0, 2**32 - 1, (1,)).item()
|
| 75 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
| 76 |
+
|
| 77 |
+
# Prepare generation parameters
|
| 78 |
+
gen_params = {
|
| 79 |
+
"prompt": prompt,
|
| 80 |
+
"height": height,
|
| 81 |
+
"width": width,
|
| 82 |
+
"num_frames": num_frames,
|
| 83 |
+
"guidance_scale": guidance_scale,
|
| 84 |
+
"num_inference_steps": num_inference_steps,
|
| 85 |
+
"generator": generator,
|
| 86 |
+
}
|
| 87 |
+
|
| 88 |
+
# Add image if provided (for image-to-video)
|
| 89 |
+
if image is not None:
|
| 90 |
+
gen_params["image"] = image
|
| 91 |
+
|
| 92 |
+
# Generate video
|
| 93 |
+
print(f"Generating video with prompt: {prompt}")
|
| 94 |
+
print(f"Parameters: {width}x{height}, {num_frames} frames, seed: {seed}")
|
| 95 |
+
|
| 96 |
+
output = pipeline(**gen_params).frames[0]
|
| 97 |
+
|
| 98 |
+
# Export to video file
|
| 99 |
+
output_path = "output.mp4"
|
| 100 |
+
export_to_video(output, output_path, fps=24)
|
| 101 |
+
|
| 102 |
+
return output_path, f"Video generated successfully! Seed used: {seed}"
|
| 103 |
+
|
| 104 |
+
except Exception as e:
|
| 105 |
+
error_msg = f"Error generating video: {str(e)}"
|
| 106 |
+
print(error_msg)
|
| 107 |
+
return None, error_msg
|
| 108 |
+
|
| 109 |
+
# Create Gradio interface
|
| 110 |
+
with gr.Blocks(title="Wan2.2 Video Generation") as demo:
|
| 111 |
+
gr.Markdown(
|
| 112 |
+
"""
|
| 113 |
+
# Wan2.2 Video Generation
|
| 114 |
+
|
| 115 |
+
Generate high-quality videos from text prompts or images using Wan2.2-TI2V-5B model.
|
| 116 |
+
This model supports both **Text-to-Video** and **Image-to-Video** generation at 720P/24fps.
|
| 117 |
+
|
| 118 |
+
**Note:** Generation takes 2-3 minutes. Settings are optimized for Zero GPU 3-minute limit.
|
| 119 |
+
"""
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
with gr.Row():
|
| 123 |
+
with gr.Column():
|
| 124 |
+
# Input controls
|
| 125 |
+
prompt_input = gr.Textbox(
|
| 126 |
+
label="Prompt",
|
| 127 |
+
placeholder="Describe the video you want to generate...",
|
| 128 |
+
lines=3,
|
| 129 |
+
value="Two anthropomorphic cats in comfy boxing gear fight on stage"
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
image_input = gr.Image(
|
| 133 |
+
label="Input Image (Optional - for Image-to-Video)",
|
| 134 |
+
type="pil",
|
| 135 |
+
sources=["upload"]
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 139 |
+
with gr.Row():
|
| 140 |
+
width_input = gr.Slider(
|
| 141 |
+
label="Width",
|
| 142 |
+
minimum=512,
|
| 143 |
+
maximum=1920,
|
| 144 |
+
step=64,
|
| 145 |
+
value=1280
|
| 146 |
+
)
|
| 147 |
+
height_input = gr.Slider(
|
| 148 |
+
label="Height",
|
| 149 |
+
minimum=512,
|
| 150 |
+
maximum=1080,
|
| 151 |
+
step=64,
|
| 152 |
+
value=704
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
num_frames_input = gr.Slider(
|
| 156 |
+
label="Number of Frames (more frames = longer video)",
|
| 157 |
+
minimum=25,
|
| 158 |
+
maximum=145,
|
| 159 |
+
step=24,
|
| 160 |
+
value=73,
|
| 161 |
+
info="73 frames ≈ 3 seconds at 24fps (optimized for Zero GPU limits)"
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
num_steps_input = gr.Slider(
|
| 165 |
+
label="Inference Steps (more steps = better quality, slower)",
|
| 166 |
+
minimum=20,
|
| 167 |
+
maximum=60,
|
| 168 |
+
step=5,
|
| 169 |
+
value=35
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
guidance_scale_input = gr.Slider(
|
| 173 |
+
label="Guidance Scale (higher = closer to prompt)",
|
| 174 |
+
minimum=1.0,
|
| 175 |
+
maximum=15.0,
|
| 176 |
+
step=0.5,
|
| 177 |
+
value=5.0
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
seed_input = gr.Number(
|
| 181 |
+
label="Seed (-1 for random)",
|
| 182 |
+
value=-1,
|
| 183 |
+
precision=0
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
generate_btn = gr.Button("Generate Video", variant="primary", size="lg")
|
| 187 |
+
|
| 188 |
+
with gr.Column():
|
| 189 |
+
# Output
|
| 190 |
+
video_output = gr.Video(
|
| 191 |
+
label="Generated Video",
|
| 192 |
+
autoplay=True
|
| 193 |
+
)
|
| 194 |
+
status_output = gr.Textbox(
|
| 195 |
+
label="Status",
|
| 196 |
+
lines=2
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
# Examples
|
| 200 |
+
gr.Examples(
|
| 201 |
+
examples=[
|
| 202 |
+
[
|
| 203 |
+
"Two anthropomorphic cats in comfy boxing gear fight on stage",
|
| 204 |
+
None,
|
| 205 |
+
1280,
|
| 206 |
+
704,
|
| 207 |
+
73,
|
| 208 |
+
35,
|
| 209 |
+
5.0,
|
| 210 |
+
42
|
| 211 |
+
],
|
| 212 |
+
[
|
| 213 |
+
"A serene underwater scene with colorful coral reefs and tropical fish swimming gracefully",
|
| 214 |
+
None,
|
| 215 |
+
1280,
|
| 216 |
+
704,
|
| 217 |
+
73,
|
| 218 |
+
35,
|
| 219 |
+
5.0,
|
| 220 |
+
123
|
| 221 |
+
],
|
| 222 |
+
[
|
| 223 |
+
"A bustling futuristic city at night with neon lights and flying cars",
|
| 224 |
+
None,
|
| 225 |
+
1280,
|
| 226 |
+
704,
|
| 227 |
+
73,
|
| 228 |
+
35,
|
| 229 |
+
5.0,
|
| 230 |
+
456
|
| 231 |
+
],
|
| 232 |
+
[
|
| 233 |
+
"A peaceful mountain landscape with snow-capped peaks and a flowing river",
|
| 234 |
+
None,
|
| 235 |
+
1280,
|
| 236 |
+
704,
|
| 237 |
+
73,
|
| 238 |
+
35,
|
| 239 |
+
5.0,
|
| 240 |
+
789
|
| 241 |
+
],
|
| 242 |
+
],
|
| 243 |
+
inputs=[
|
| 244 |
+
prompt_input,
|
| 245 |
+
image_input,
|
| 246 |
+
width_input,
|
| 247 |
+
height_input,
|
| 248 |
+
num_frames_input,
|
| 249 |
+
num_steps_input,
|
| 250 |
+
guidance_scale_input,
|
| 251 |
+
seed_input
|
| 252 |
+
],
|
| 253 |
+
outputs=[video_output, status_output],
|
| 254 |
+
fn=generate_video,
|
| 255 |
+
cache_examples=False,
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
# Connect generate button
|
| 259 |
+
generate_btn.click(
|
| 260 |
+
fn=generate_video,
|
| 261 |
+
inputs=[
|
| 262 |
+
prompt_input,
|
| 263 |
+
image_input,
|
| 264 |
+
width_input,
|
| 265 |
+
height_input,
|
| 266 |
+
num_frames_input,
|
| 267 |
+
num_steps_input,
|
| 268 |
+
guidance_scale_input,
|
| 269 |
+
seed_input
|
| 270 |
+
],
|
| 271 |
+
outputs=[video_output, status_output]
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
gr.Markdown(
|
| 275 |
+
"""
|
| 276 |
+
## Tips for Best Results:
|
| 277 |
+
- Use detailed, descriptive prompts
|
| 278 |
+
- For image-to-video: Upload a clear image that matches your prompt
|
| 279 |
+
- Higher inference steps = better quality but slower generation
|
| 280 |
+
- Adjust guidance scale to balance creativity vs. prompt adherence
|
| 281 |
+
- Use the same seed to reproduce results
|
| 282 |
+
- Keep generation under 3 minutes to fit Zero GPU limits
|
| 283 |
+
|
| 284 |
+
## Model Information:
|
| 285 |
+
- Model: Wan2.2-TI2V-5B (5B parameters)
|
| 286 |
+
- Resolution: 720P (1280x704 or custom)
|
| 287 |
+
- Frame Rate: 24 fps
|
| 288 |
+
- Default Duration: 3 seconds (optimized for Zero GPU)
|
| 289 |
+
- Generation Time: ~2-3 minutes on Zero GPU (with optimized settings)
|
| 290 |
+
"""
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
# Launch the app
|
| 294 |
+
if __name__ == "__main__":
|
| 295 |
+
demo.queue(max_size=20)
|
| 296 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# CRITICAL: spaces must be imported first in app.py to avoid CUDA initialization issues
|
| 2 |
+
|
| 3 |
+
# Hugging Face Spaces GPU support
|
| 4 |
+
spaces>=0.30.0
|
| 5 |
+
|
| 6 |
+
# Gradio for the UI - using latest version (security update required)
|
| 7 |
+
gradio>=5.49.0
|
| 8 |
+
|
| 9 |
+
# Core dependencies for Wan2.2 video generation
|
| 10 |
+
torch>=2.5.0
|
| 11 |
+
torchvision>=0.20.0
|
| 12 |
+
numpy>=1.26.0
|
| 13 |
+
pillow>=10.4.0
|
| 14 |
+
|
| 15 |
+
# Diffusers - using main branch for latest Wan2.2 features
|
| 16 |
+
git+https://github.com/huggingface/diffusers
|
| 17 |
+
|
| 18 |
+
# Accelerate for optimization
|
| 19 |
+
accelerate>=1.0.0
|
| 20 |
+
|
| 21 |
+
# Additional dependencies for video processing
|
| 22 |
+
opencv-python>=4.10.0
|
| 23 |
+
av>=13.0.0
|
| 24 |
+
imageio>=2.35.0
|
| 25 |
+
imageio-ffmpeg>=0.5.0
|
| 26 |
+
|
| 27 |
+
# Transformers for T5 text encoder
|
| 28 |
+
transformers>=4.46.0
|
| 29 |
+
|
| 30 |
+
# Safe tensor loading
|
| 31 |
+
safetensors>=0.4.5
|
| 32 |
+
|
| 33 |
+
# Model downloading
|
| 34 |
+
huggingface-hub>=0.26.0
|
| 35 |
+
|
| 36 |
+
# Additional optimization libraries
|
| 37 |
+
sentencepiece>=0.2.0
|
| 38 |
+
protobuf>=5.28.0
|