File size: 10,916 Bytes
561efb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import os
import torch
import torch.nn as nn
import torch.nn.functional as F

from typing import List, Optional, Tuple, Union
from transformers.models.qwen2_vl.configuration_qwen2_vl import Qwen2VLConfig
from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLCausalLMOutputWithPast
from transformers.utils import logging
from qwen2_vl import Qwen2VLVisionConnectorSimple
from segment_anything_2.sam2.build_sam import build_sam2

logger = logging.get_logger(__name__)
local_rank = int(os.getenv("LOCAL_RANK", -1))


class SAMR1Config(Qwen2VLConfig):
    def __init__(self, num_of_query=None, if_use_qwen_connector=None, if_include_sam=None, **kwargs):
        super().__init__(**kwargs)
        self.num_of_query = num_of_query
        self.if_use_qwen_connector = if_use_qwen_connector

class SAMR1ForConditionalGeneration_qwen2p5(Qwen2_5_VLForConditionalGeneration):
    """
    SAM-R1 model for conditional generation based on Qwen2VL.
    Integrates a learnable query parameter and projection to SAM for joint vision-language tasks.
    """
    config_class = SAMR1Config
    
    def __init__(self, config, num_of_query=64, if_use_qwen_connector=True, **kwargs):
        super().__init__(config)
        model_num_of_query = config.num_of_query or num_of_query
        model_if_use_qwen_connector = config.if_use_qwen_connector or if_use_qwen_connector

        self.if_detach_res_loss = False

        # Learnable context queries
        self.learnable_query = nn.Parameter(torch.randn(1, model_num_of_query, config.hidden_size), requires_grad=True)
        self.learnable_query.ds_full_param = True  # Keep full param in DeepSpeed ZeRO
        self.learnable_query.ds_persist = True

        self.model_num_of_query = model_num_of_query
        self.model_if_use_qwen_connector = model_if_use_qwen_connector

        self.conv_1d = nn.Conv1d(config.hidden_size, config.hidden_size, kernel_size=model_num_of_query)
        
        if model_if_use_qwen_connector:
            self.connector = Qwen2VLVisionConnectorSimple(depth=4, seq_len=model_num_of_query, embed_dim=config.hidden_size)

        # Projection to SAM feature space
        self.proj_to_sam = nn.Sequential(
            nn.Linear(config.hidden_size, config.hidden_size),
            nn.GELU(),
            nn.Linear(config.hidden_size, 256)
        )   

        # Build SAM backbone
        self.sam = build_sam2("sam2_hiera_l.yaml", device=self.model.device)
        del self.sam.maskmem_tpos_enc
        del self.sam.memory_attention
        del self.sam.memory_encoder

        input_size = 1024
        self._bb_feat_sizes = [
            (input_size // 4, input_size // 4),
            (input_size // 8, input_size // 8),
            (input_size // 16, input_size // 16),
        ]
        
        self._init_custom_params()
        self.post_init()
    
    def _init_custom_params(self):
        """Initialize custom parameters."""
        nn.init.normal_(self.learnable_query, mean=0.0, std=0.02)
        nn.init.normal_(self.conv_1d.weight, mean=0.0, std=0.02)
        nn.init.zeros_(self.conv_1d.bias)

    def set_if_detach_res_loss(self, if_detach_res_loss):
        self.if_detach_res_loss = if_detach_res_loss
    
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        pixel_values: Optional[torch.FloatTensor] = None,
        pixel_values_videos: Optional[torch.FloatTensor] = None,
        image_grid_thw: Optional[torch.LongTensor] = None,
        video_grid_thw: Optional[torch.LongTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        use_learnable_query: bool = False,
        **kwargs,
    ) -> Union[Tuple, Qwen2_5_VLCausalLMOutputWithPast]:
        """
        Extended forward method to support learnable query injection.
        """
        if use_learnable_query:
            attention_mask, inputs_embeds = self.process_llm_input(input_ids, pixel_values, image_grid_thw, attention_mask)
            input_ids = None

        sam_images = kwargs.pop("sam_images", None)
        mllm_pred_bboxes = kwargs.pop("pred_bboxes", None)
        mllm_pred_points = kwargs.pop("pred_points", None)

        outputs = super().forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            pixel_values=pixel_values,
            pixel_values_videos=pixel_values_videos,
            image_grid_thw=image_grid_thw,
            video_grid_thw=video_grid_thw,
            labels=labels,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            **kwargs,
        )

        if sam_images is not None:
            assert output_hidden_states is True
            box_end_embedding = self.get_sam_embedding(outputs.hidden_states[-1], if_detach_res_loss=self.if_detach_res_loss)
            sam_images = sam_images.to(box_end_embedding)
            backbone_out = self.sam.forward_image(sam_images)
            _, image_embeddings, _, _ = self.sam._prepare_backbone_features(backbone_out)
            image_embeddings = [_.to(sam_images.dtype) for _ in image_embeddings]
            batch_size = sam_images.shape[0]
            if self.sam.directly_add_no_mem_embed:
                image_embeddings[-1] = image_embeddings[-1] + self.sam.no_mem_embed

            feats = [
                feat.permute(1, 2, 0).view(batch_size, -1, *feat_size)
                for feat, feat_size in zip(image_embeddings[::-1], self._bb_feat_sizes[::-1])
            ][::-1]
            _features = {"image_embed": feats[-1], "high_res_feats": feats[:-1]}
            pred_masks = []
            for i in range(len(box_end_embedding)):
                if mllm_pred_bboxes is not None and mllm_pred_points is not None:                    
                    pred_box = mllm_pred_bboxes[i]
                    pred_point = mllm_pred_points[i]
                    boxes = pred_box.unsqueeze(0).to(box_end_embedding)
                    coords = pred_point.unsqueeze(0).unsqueeze(0).to(box_end_embedding)
                    labels = torch.ones((1, 1), device=box_end_embedding.device, dtype=torch.long)
                    labels[(coords[..., 0] == 0) & (coords[..., 1] == 0)] = -1
                    points = (coords, labels)
                else:
                    boxes = None
                    points = None

                sparse_embeddings, dense_embeddings = self.sam.sam_prompt_encoder(
                    points=points,
                    boxes=boxes,
                    masks=None,
                    text_embeds=box_end_embedding[i].unsqueeze(0),
                )
                sparse_embeddings = sparse_embeddings.to(box_end_embedding[i].dtype)
                high_res_features = [feat_level[i].unsqueeze(0) for feat_level in _features["high_res_feats"]]
                low_res_masks, _, _, _ = self.sam.sam_mask_decoder(
                    image_embeddings=_features["image_embed"][i].unsqueeze(0),
                    image_pe=self.sam.sam_prompt_encoder.get_dense_pe(),
                    sparse_prompt_embeddings=sparse_embeddings,
                    dense_prompt_embeddings=dense_embeddings,
                    multimask_output=False,
                    repeat_image=True,
                    high_res_features=high_res_features,
                )
                pred_masks.append(low_res_masks)
            return outputs, pred_masks
                 
        return outputs
    
    def process_llm_input(self, input_ids, pixel_values, image_grid_thw, attention_mask):
        """
        Convert input_ids to embeddings and append learnable queries at the end.
        """
        if not isinstance(input_ids, torch.LongTensor):
            input_ids = input_ids.to(torch.long)
        inputs_embeds = self.model.embed_tokens(input_ids)
        if pixel_values is not None:
            pixel_values = pixel_values.type(self.visual.dtype)
            image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
            n_image_tokens = (input_ids == self.config.image_token_id).sum().item()
            n_image_features = image_embeds.shape[0]
            if n_image_tokens != n_image_features:
                raise ValueError(
                    f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
                )
            image_mask = (
                (input_ids == self.config.image_token_id)
                .unsqueeze(-1)
                .expand_as(inputs_embeds)
                .to(inputs_embeds.device)
            )
            image_embeds = image_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
            inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)

        inputs_embeds = torch.cat(
            [inputs_embeds, self.learnable_query.repeat(inputs_embeds.size(0), 1, 1)], dim=1
        )

        if attention_mask is not None:
            attention_mask = attention_mask.to(inputs_embeds.device)
            attention_mask = torch.cat(
                [attention_mask, torch.ones(attention_mask.size(0), self.model_num_of_query).to(attention_mask)], dim=1
            )
        else:
            attention_mask = torch.ones(inputs_embeds.size(0), inputs_embeds.size(1)).to(inputs_embeds.device)
        
        return attention_mask, inputs_embeds

    def get_sam_embedding(self, hidden_states, if_detach_res_loss=False):
        """
        Extract and project SAM embedding from the last learnable queries in hidden states.
        """
        query_hidden_state = hidden_states[:, -self.model_num_of_query:]

        if if_detach_res_loss:
            query_hidden_state = query_hidden_state.detach()

        if self.model_if_use_qwen_connector:
            query_hidden_state = self.connector(query_hidden_state)

        query_hidden_state = self.conv_1d(query_hidden_state.transpose(1, 2)).transpose(1, 2).contiguous()
        sam_embedding = self.proj_to_sam(query_hidden_state)
         
        return sam_embedding
    
    def postprocess_masks(self, masks, orig_hw):
        masks = masks.float()
        masks = F.interpolate(masks, orig_hw, mode="bilinear", align_corners=False)
        return masks


__all__ = ["SAMR1ForConditionalGeneration_qwen2p5"]