Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import gradio as gr | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer | |
| from string import punctuation | |
| import re | |
| from parler_tts import ParlerTTSForConditionalGeneration | |
| from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed | |
| # Device setup | |
| device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
| # SmolLM setup | |
| checkpoint = "HuggingFaceTB/SmolLM-360M" | |
| smol_tokenizer = AutoTokenizer.from_pretrained(checkpoint) | |
| smol_model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto", torch_dtype=torch.bfloat16) | |
| # Original model setup | |
| repo_id = "ylacombe/p-m-e" | |
| model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device) | |
| text_tokenizer = AutoTokenizer.from_pretrained(repo_id) | |
| description_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large") | |
| feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id) | |
| SAMPLE_RATE = feature_extractor.sampling_rate | |
| SEED = 42 | |
| default_text = "La voix humaine est un instrument de musique au-dessus de tous les autres." | |
| default_description = "a woman with a slightly low-pitched voice speaks slowly in a clear and close-sounding environment, but her delivery is quite monotone." | |
| examples = [ | |
| [ | |
| "La voix humaine est un instrument de musique au-dessus de tous les autres.", | |
| "a woman with a slightly low-pitched voice speaks slowly in a clear and close-sounding environment, but her delivery is quite monotone.", | |
| True, | |
| None, | |
| ], | |
| [ | |
| "The human voice is nature's most perfect instrument.", | |
| "A woman with a slightly low-pitched voice speaks slowly in a very distant-sounding environment with a clean audio quality, delivering her message in a very monotone manner.", | |
| True, | |
| None, | |
| ], | |
| ] | |
| number_normalizer = EnglishNumberNormalizer() | |
| def format_description(raw_description, do_format=True): | |
| if not do_format: | |
| return raw_description | |
| prompt = f"""Format this voice description to match exactly: | |
| "a [gender] with a [pitch] voice speaks [speed] in a [environment], [delivery style]" | |
| Where: | |
| - gender: man/woman | |
| - pitch: slightly low-pitched/moderate pitch/high-pitched | |
| - speed: slowly/moderately/quickly | |
| - environment: close-sounding and clear/distant-sounding and noisy | |
| - delivery style: with monotone delivery/with animated delivery | |
| Description to format: {raw_description} | |
| Formatted description:""" | |
| inputs = smol_tokenizer.encode(prompt, return_tensors="pt").to(device) | |
| outputs = smol_model.generate( | |
| inputs, | |
| max_length=200, | |
| num_return_sequences=1, | |
| temperature=0.7, | |
| do_sample=True, | |
| pad_token_id=smol_tokenizer.eos_token_id | |
| ) | |
| formatted = smol_tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return formatted.split("Formatted description:")[-1].strip() | |
| def preprocess(text): | |
| text = number_normalizer(text).strip() | |
| text = text.replace("-", " ") | |
| if text[-1] not in punctuation: | |
| text = f"{text}." | |
| abbreviations_pattern = r'\b[A-Z][A-Z\.]+\b' | |
| def separate_abb(chunk): | |
| chunk = chunk.replace(".","") | |
| return " ".join(chunk) | |
| abbreviations = re.findall(abbreviations_pattern, text) | |
| for abv in abbreviations: | |
| if abv in text: | |
| text = text.replace(abv, separate_abb(abv)) | |
| return text | |
| def gen_tts(text, description, do_format=True): | |
| formatted_desc = format_description(description, do_format) | |
| inputs = description_tokenizer(formatted_desc.strip(), return_tensors="pt").to(device) | |
| prompt = text_tokenizer(preprocess(text), return_tensors="pt").to(device) | |
| set_seed(SEED) | |
| generation = model.generate( | |
| input_ids=inputs.input_ids, | |
| prompt_input_ids=prompt.input_ids, | |
| attention_mask=inputs.attention_mask, | |
| prompt_attention_mask=prompt.attention_mask, | |
| do_sample=True, | |
| temperature=1.0 | |
| ) | |
| audio_arr = generation.cpu().numpy().squeeze() | |
| return formatted_desc, (SAMPLE_RATE, audio_arr) | |
| css = """ | |
| #share-btn-container { | |
| display: flex; | |
| padding-left: 0.5rem !important; | |
| padding-right: 0.5rem !important; | |
| background-color: #000000; | |
| justify-content: center; | |
| align-items: center; | |
| border-radius: 9999px !important; | |
| width: 13rem; | |
| margin-top: 10px; | |
| margin-left: auto; | |
| flex: unset !important; | |
| } | |
| #share-btn { | |
| all: initial; | |
| color: #ffffff; | |
| font-weight: 600; | |
| cursor: pointer; | |
| font-family: 'IBM Plex Sans', sans-serif; | |
| margin-left: 0.5rem !important; | |
| padding-top: 0.25rem !important; | |
| padding-bottom: 0.25rem !important; | |
| right:0; | |
| } | |
| #share-btn * { | |
| all: unset !important; | |
| } | |
| #share-btn-container div:nth-child(-n+2){ | |
| width: auto !important; | |
| min-height: 0px !important; | |
| } | |
| #share-btn-container .wrap { | |
| display: none !important; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as block: | |
| gr.HTML( | |
| """ | |
| <div style="text-align: center; max-width: 700px; margin: 0 auto;"> | |
| <div style="display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;"> | |
| <h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;"> | |
| Multi Parler-TTS 🗣️ | |
| </h1> | |
| </div> | |
| </div> | |
| """ | |
| ) | |
| gr.HTML( | |
| """<p><a href="https://github.com/huggingface/parler-tts">Parler-TTS</a> is a training and inference library for | |
| high-fidelity text-to-speech (TTS) models.</p> | |
| <p>This multilingual model supports French, Spanish, Italian, Portuguese, Polish, German, Dutch, and English. It generates high-quality speech with features that can be controlled using a simple text prompt.</p> | |
| <p>By default, Parler-TTS generates 🎲 random voice characteristics. To ensure 🎯 <b>speaker consistency</b> across generations, try to use consistent descriptions in your prompts.</p>""" | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_text = gr.Textbox( | |
| label="Input Text", | |
| lines=2, | |
| value=default_text | |
| ) | |
| raw_description = gr.Textbox( | |
| label="Voice Description", | |
| lines=2, | |
| value=default_description | |
| ) | |
| do_format = gr.Checkbox( | |
| label="Reformat description using SmolLM", | |
| value=True | |
| ) | |
| formatted_description = gr.Textbox( | |
| label="Used Description", | |
| lines=2 | |
| ) | |
| generate_button = gr.Button("Generate Audio", variant="primary") | |
| with gr.Column(): | |
| audio_out = gr.Audio(label="Parler-TTS generation", type="numpy") | |
| generate_button.click( | |
| fn=gen_tts, | |
| inputs=[input_text, raw_description, do_format], | |
| outputs=[formatted_description, audio_out] | |
| ) | |
| gr.Examples( | |
| examples=examples, | |
| fn=gen_tts, | |
| inputs=[input_text, raw_description, do_format], | |
| outputs=[formatted_description, audio_out], | |
| cache_examples=True | |
| ) | |
| gr.HTML( | |
| """<p>Tips for ensuring good generation: | |
| <ul> | |
| <li>Include the term "very clear audio" to generate the highest quality audio, and "very noisy audio" for high levels of background noise</li> | |
| <li>Punctuation can be used to control the prosody of the generations</li> | |
| <li>The remaining speech features (gender, speaking rate, pitch and reverberation) can be controlled directly through the prompt</li> | |
| </ul> | |
| </p>""" | |
| ) | |
| block.queue() | |
| block.launch(share=True) |