Spaces:
Sleeping
Sleeping
Pawan Patil
commited on
Commit
·
afefd94
1
Parent(s):
dcd4138
Final commit after Git identity setup
Browse files- agent_app.py +105 -0
- requirements.txt +8 -0
- sheet_tool.py +87 -0
- web_app.py +15 -0
agent_app.py
ADDED
|
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# agent_app.py
|
| 2 |
+
from smolagents import CodeAgent, TransformersModel
|
| 3 |
+
from smolagents import tool
|
| 4 |
+
from sheet_tool import (
|
| 5 |
+
fetch_sheet_as_df,
|
| 6 |
+
create_pivot,
|
| 7 |
+
summary_stats,
|
| 8 |
+
plot_dataframe,
|
| 9 |
+
df_to_csv_bytes,
|
| 10 |
+
)
|
| 11 |
+
import base64
|
| 12 |
+
|
| 13 |
+
# Initialize model
|
| 14 |
+
model = TransformersModel(model_id="HuggingFaceTB/SmolLM-135M-Instruct")
|
| 15 |
+
|
| 16 |
+
# -------------------------------
|
| 17 |
+
# ✅ TOOL DEFINITIONS
|
| 18 |
+
# -------------------------------
|
| 19 |
+
|
| 20 |
+
@tool
|
| 21 |
+
def load_sheet() -> dict:
|
| 22 |
+
"""Load Google Sheet into a dataframe and return a short summary (not the full sheet)."""
|
| 23 |
+
df = fetch_sheet_as_df()
|
| 24 |
+
if df.empty:
|
| 25 |
+
return {"error": "Sheet is empty or not found."}
|
| 26 |
+
return {
|
| 27 |
+
"rows": len(df),
|
| 28 |
+
"columns": list(df.columns),
|
| 29 |
+
"head": df.head(5).to_dict(orient="records"),
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
@tool
|
| 34 |
+
def pivot(index_cols: str, column_cols: str, value_cols: str, aggfunc: str = "sum") -> dict:
|
| 35 |
+
"""
|
| 36 |
+
Create a pivot table from the Google Sheet.
|
| 37 |
+
|
| 38 |
+
Args:
|
| 39 |
+
index_cols (str): Comma-separated list of columns to use as the pivot table index.
|
| 40 |
+
column_cols (str): Comma-separated list of columns to use as pivot table columns.
|
| 41 |
+
value_cols (str): Comma-separated list of columns to aggregate.
|
| 42 |
+
aggfunc (str, optional): Aggregation function to apply (e.g., 'sum', 'mean', 'count'). Defaults to 'sum'.
|
| 43 |
+
"""
|
| 44 |
+
df = fetch_sheet_as_df()
|
| 45 |
+
if df.empty:
|
| 46 |
+
return {"error": "Sheet empty"}
|
| 47 |
+
index = [c.strip() for c in index_cols.split(",")] if index_cols else []
|
| 48 |
+
columns = [c.strip() for c in column_cols.split(",")] if column_cols else []
|
| 49 |
+
values = [c.strip() for c in value_cols.split(",")] if value_cols else []
|
| 50 |
+
pivot_df = create_pivot(df, index=index, columns=columns, values=values, aggfunc=aggfunc)
|
| 51 |
+
csv_bytes = df_to_csv_bytes(pivot_df)
|
| 52 |
+
return {
|
| 53 |
+
"pivot_preview": pivot_df.head(10).to_dict(orient="records"),
|
| 54 |
+
"csv_b64": base64.b64encode(csv_bytes).decode("utf-8")
|
| 55 |
+
}
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
@tool
|
| 60 |
+
def stats() -> dict:
|
| 61 |
+
"""Generate summary statistics of the sheet."""
|
| 62 |
+
df = fetch_sheet_as_df()
|
| 63 |
+
if df.empty:
|
| 64 |
+
return {"error": "Sheet empty"}
|
| 65 |
+
s = summary_stats(df)
|
| 66 |
+
return {"summary": s.to_dict()}
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
@tool
|
| 70 |
+
def plot(kind: str = "bar", x: str = None, y: str = None, title: str = None) -> dict:
|
| 71 |
+
"""
|
| 72 |
+
Create a plot from the Google Sheet data.
|
| 73 |
+
|
| 74 |
+
Args:
|
| 75 |
+
kind (str): Type of chart to create. Example values: 'bar', 'line', 'pie', 'scatter'.
|
| 76 |
+
x (str, optional): Column name to use for the X-axis. Example: 'Date'.
|
| 77 |
+
y (str, optional): Comma-separated column names to use for Y-axis. Example: 'Sales,Profit'.
|
| 78 |
+
title (str, optional): Chart title to display at the top.
|
| 79 |
+
|
| 80 |
+
Returns:
|
| 81 |
+
dict: A dictionary containing the base64-encoded plot image or an error message if the sheet is empty.
|
| 82 |
+
"""
|
| 83 |
+
df = fetch_sheet_as_df()
|
| 84 |
+
if df.empty:
|
| 85 |
+
return {"error": "Sheet empty"}
|
| 86 |
+
|
| 87 |
+
y_list = [c.strip() for c in y.split(",")] if y else None
|
| 88 |
+
img_data_uri = plot_dataframe(df, kind=kind, x=x, y=y_list, title=title)
|
| 89 |
+
return {"image": img_data_uri}
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
# -------------------------------
|
| 93 |
+
# ✅ AGENT CREATION
|
| 94 |
+
# -------------------------------
|
| 95 |
+
agent = CodeAgent(model=model, tools=[load_sheet, pivot, stats, plot], add_base_tools=True)
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def ask_agent(nl_query: str) -> dict:
|
| 99 |
+
"""Send a natural-language query to the agent and return structured response."""
|
| 100 |
+
try:
|
| 101 |
+
resp = agent.run(nl_query)
|
| 102 |
+
return {"text": str(resp)}
|
| 103 |
+
except Exception as e:
|
| 104 |
+
return {"error": str(e)}
|
| 105 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
pandas
|
| 3 |
+
google-auth
|
| 4 |
+
google-auth-oauthlib
|
| 5 |
+
google-auth-httplib2
|
| 6 |
+
gspread
|
| 7 |
+
smolagents
|
| 8 |
+
requests
|
sheet_tool.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# sheet_tool.py
|
| 2 |
+
from google.oauth2.service_account import Credentials
|
| 3 |
+
import gspread
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
import io
|
| 7 |
+
import base64
|
| 8 |
+
from typing import Tuple
|
| 9 |
+
|
| 10 |
+
# CONFIG - change these
|
| 11 |
+
CREDENTIALS_FILE = "credentials.json" # path to your service account JSON
|
| 12 |
+
SHEET_ID = "1nOekWGmPsjoHj9T-MFjlNGSFyKPRogVbEjFNRxGgxuM" # replace with your sheet id
|
| 13 |
+
WORKSHEET_INDEX = 0 # first sheet
|
| 14 |
+
|
| 15 |
+
SCOPES = [
|
| 16 |
+
"https://www.googleapis.com/auth/spreadsheets",
|
| 17 |
+
"https://www.googleapis.com/auth/drive",
|
| 18 |
+
]
|
| 19 |
+
|
| 20 |
+
def authorize_gs():
|
| 21 |
+
creds = Credentials.from_service_account_file(CREDENTIALS_FILE, scopes=SCOPES)
|
| 22 |
+
client = gspread.authorize(creds)
|
| 23 |
+
return client
|
| 24 |
+
|
| 25 |
+
def fetch_sheet_as_df(sheet_id: str = SHEET_ID, worksheet_index: int = WORKSHEET_INDEX) -> pd.DataFrame:
|
| 26 |
+
client = authorize_gs()
|
| 27 |
+
sh = client.open_by_key(sheet_id)
|
| 28 |
+
worksheet = sh.get_worksheet(worksheet_index)
|
| 29 |
+
data = worksheet.get_all_values()
|
| 30 |
+
if not data:
|
| 31 |
+
return pd.DataFrame()
|
| 32 |
+
df = pd.DataFrame(data[1:], columns=data[0])
|
| 33 |
+
# try to convert numeric columns where possible
|
| 34 |
+
for col in df.columns:
|
| 35 |
+
df[col] = pd.to_numeric(df[col], errors="ignore")
|
| 36 |
+
return df
|
| 37 |
+
|
| 38 |
+
def create_pivot(df: pd.DataFrame, index: list, columns: list, values: list, aggfunc: str = "sum") -> pd.DataFrame:
|
| 39 |
+
if df.empty:
|
| 40 |
+
return pd.DataFrame()
|
| 41 |
+
# pandas supports aggfunc as string or function
|
| 42 |
+
agg = getattr(pd.core.groupby.SeriesGroupBy, aggfunc, None)
|
| 43 |
+
pivot = pd.pivot_table(df, index=index, columns=columns, values=values, aggfunc=aggfunc, fill_value=0)
|
| 44 |
+
# convert MultiIndex columns to string for easier display
|
| 45 |
+
pivot = pivot.reset_index()
|
| 46 |
+
pivot.columns = [(" " .join(map(str, c)) if isinstance(c, tuple) else c).strip() for c in pivot.columns]
|
| 47 |
+
return pivot
|
| 48 |
+
|
| 49 |
+
def summary_stats(df: pd.DataFrame, numeric_only: bool = True) -> pd.DataFrame:
|
| 50 |
+
if df.empty:
|
| 51 |
+
return pd.DataFrame()
|
| 52 |
+
return df.describe(include="all") if not numeric_only else df.describe()
|
| 53 |
+
|
| 54 |
+
def plot_dataframe(df: pd.DataFrame, kind: str = "bar", x: str = None, y: list = None, title: str = None, figsize=(8,5)) -> str:
|
| 55 |
+
"""
|
| 56 |
+
Creates a matplotlib plot and returns a base64 PNG data URI.
|
| 57 |
+
"""
|
| 58 |
+
if df.empty:
|
| 59 |
+
raise ValueError("DataFrame is empty")
|
| 60 |
+
|
| 61 |
+
plt.close('all')
|
| 62 |
+
fig, ax = plt.subplots(figsize=figsize)
|
| 63 |
+
|
| 64 |
+
if kind == "bar":
|
| 65 |
+
if x is None or y is None:
|
| 66 |
+
df.plot(kind="bar", ax=ax)
|
| 67 |
+
else:
|
| 68 |
+
df.plot(kind="bar", x=x, y=y, ax=ax)
|
| 69 |
+
elif kind == "line":
|
| 70 |
+
df.plot(kind="line", x=x, y=y, ax=ax)
|
| 71 |
+
elif kind == "pie":
|
| 72 |
+
df.set_index(x)[y].plot(kind="pie", ax=ax, autopct='%1.1f%%')
|
| 73 |
+
else:
|
| 74 |
+
df.plot(kind=kind, x=x, y=y, ax=ax)
|
| 75 |
+
|
| 76 |
+
if title:
|
| 77 |
+
ax.set_title(title)
|
| 78 |
+
ax.grid(True)
|
| 79 |
+
buf = io.BytesIO()
|
| 80 |
+
fig.tight_layout()
|
| 81 |
+
fig.savefig(buf, format="png")
|
| 82 |
+
buf.seek(0)
|
| 83 |
+
b64 = base64.b64encode(buf.read()).decode("utf-8")
|
| 84 |
+
return "data:image/png;base64," + b64
|
| 85 |
+
|
| 86 |
+
def df_to_csv_bytes(df: pd.DataFrame) -> bytes:
|
| 87 |
+
return df.to_csv(index=False).encode("utf-8")
|
web_app.py
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# web_app.py
|
| 2 |
+
from flask import Flask, request, jsonify
|
| 3 |
+
from agent_app import ask_agent
|
| 4 |
+
|
| 5 |
+
app = Flask(__name__)
|
| 6 |
+
|
| 7 |
+
@app.route("/ask", methods=["POST"])
|
| 8 |
+
def ask():
|
| 9 |
+
data = request.json
|
| 10 |
+
prompt = data.get("prompt")
|
| 11 |
+
result = ask_agent(prompt)
|
| 12 |
+
return jsonify({"result": result})
|
| 13 |
+
|
| 14 |
+
if __name__ == "__main__":
|
| 15 |
+
app.run(port=8000, debug=True)
|