Update app.py
Browse files
app.py
CHANGED
|
@@ -8,7 +8,7 @@ lora_path = "OedoSoldier/detail-tweaker-lora"
|
|
| 8 |
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to("cuda")
|
| 9 |
|
| 10 |
@spaces.GPU
|
| 11 |
-
def generate_image(prompt, negative_prompt, num_inference_steps=30, guidance_scale=7.0,model="Real6.0"):
|
| 12 |
|
| 13 |
if model == "Real5.0":
|
| 14 |
model_id = "SG161222/Realistic_Vision_V5.0_noVAE"
|
|
@@ -35,17 +35,18 @@ def generate_image(prompt, negative_prompt, num_inference_steps=30, guidance_sca
|
|
| 35 |
|
| 36 |
|
| 37 |
# Generate the image
|
| 38 |
-
|
| 39 |
prompt = prompt,
|
| 40 |
negative_prompt = negative_prompt,
|
| 41 |
cross_attention_kwargs = {"scale":1},
|
| 42 |
num_inference_steps = num_inference_steps,
|
| 43 |
guidance_scale = guidance_scale,
|
| 44 |
width = 720,
|
| 45 |
-
height = 720
|
|
|
|
| 46 |
).images[0]
|
| 47 |
|
| 48 |
-
return
|
| 49 |
|
| 50 |
title = """<h1 align="center">ProFaker</h1>"""
|
| 51 |
# Create the Gradio interface
|
|
@@ -72,6 +73,13 @@ with gr.Blocks() as demo:
|
|
| 72 |
value="Real6.0",
|
| 73 |
label="Model",
|
| 74 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
steps_slider = gr.Slider(
|
| 76 |
minimum=1,
|
| 77 |
maximum=100,
|
|
@@ -88,13 +96,19 @@ with gr.Blocks() as demo:
|
|
| 88 |
)
|
| 89 |
with gr.Column():
|
| 90 |
# Output component
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
|
| 94 |
# Connect the interface to the generation function
|
| 95 |
generate_button.click(
|
| 96 |
fn=generate_image,
|
| 97 |
-
inputs=[prompt, negative_prompt, steps_slider, guidance_slider, model],
|
| 98 |
outputs=image_output
|
| 99 |
)
|
| 100 |
|
|
|
|
| 8 |
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to("cuda")
|
| 9 |
|
| 10 |
@spaces.GPU
|
| 11 |
+
def generate_image(prompt, negative_prompt, num_inference_steps=30, guidance_scale=7.0,model="Real6.0",num_images_slider=1):
|
| 12 |
|
| 13 |
if model == "Real5.0":
|
| 14 |
model_id = "SG161222/Realistic_Vision_V5.0_noVAE"
|
|
|
|
| 35 |
|
| 36 |
|
| 37 |
# Generate the image
|
| 38 |
+
result = pipe(
|
| 39 |
prompt = prompt,
|
| 40 |
negative_prompt = negative_prompt,
|
| 41 |
cross_attention_kwargs = {"scale":1},
|
| 42 |
num_inference_steps = num_inference_steps,
|
| 43 |
guidance_scale = guidance_scale,
|
| 44 |
width = 720,
|
| 45 |
+
height = 720,
|
| 46 |
+
num_images_per_prompt=num_images
|
| 47 |
).images[0]
|
| 48 |
|
| 49 |
+
return result.images
|
| 50 |
|
| 51 |
title = """<h1 align="center">ProFaker</h1>"""
|
| 52 |
# Create the Gradio interface
|
|
|
|
| 73 |
value="Real6.0",
|
| 74 |
label="Model",
|
| 75 |
)
|
| 76 |
+
num_images_slider = gr.Slider( # New slider for number of images
|
| 77 |
+
minimum=1,
|
| 78 |
+
maximum=4,
|
| 79 |
+
value=1,
|
| 80 |
+
step=1,
|
| 81 |
+
label="Number of Images to Generate"
|
| 82 |
+
)
|
| 83 |
steps_slider = gr.Slider(
|
| 84 |
minimum=1,
|
| 85 |
maximum=100,
|
|
|
|
| 96 |
)
|
| 97 |
with gr.Column():
|
| 98 |
# Output component
|
| 99 |
+
gallery = gr.Gallery(
|
| 100 |
+
label="Generated Images",
|
| 101 |
+
show_label=True,
|
| 102 |
+
elem_id="gallery",
|
| 103 |
+
columns=2,
|
| 104 |
+
rows=2
|
| 105 |
+
)
|
| 106 |
|
| 107 |
|
| 108 |
# Connect the interface to the generation function
|
| 109 |
generate_button.click(
|
| 110 |
fn=generate_image,
|
| 111 |
+
inputs=[prompt, negative_prompt, steps_slider, guidance_slider, model, num_images_slider],
|
| 112 |
outputs=image_output
|
| 113 |
)
|
| 114 |
|