File size: 43,137 Bytes
b66240d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 |
#!/usr/bin/env python3
"""
Crypto Data Aggregator - Admin Dashboard (Gradio App)
STRICT REAL-DATA-ONLY implementation for Hugging Face Spaces
7 Tabs:
1. Status - System health & overview
2. Providers - API provider management
3. Market Data - Live cryptocurrency data
4. APL Scanner - Auto Provider Loader
5. HF Models - Hugging Face model status
6. Diagnostics - System diagnostics & auto-repair
7. Logs - System logs viewer
"""
import sys
import os
import logging
from pathlib import Path
from typing import Dict, List, Any, Tuple, Optional
from datetime import datetime
import json
import traceback
import asyncio
import time
# Check for Gradio
try:
import gradio as gr
except ImportError:
print("ERROR: gradio not installed. Run: pip install gradio")
sys.exit(1)
# Check for optional dependencies
try:
import pandas as pd
PANDAS_AVAILABLE = True
except ImportError:
PANDAS_AVAILABLE = False
print("WARNING: pandas not installed. Some features disabled.")
try:
import plotly.graph_objects as go
from plotly.subplots import make_subplots
PLOTLY_AVAILABLE = True
except ImportError:
PLOTLY_AVAILABLE = False
print("WARNING: plotly not installed. Charts disabled.")
# Import local modules
import config
import database
import collectors
# ==================== INDEPENDENT LOGGING SETUP ====================
# DO NOT use utils.setup_logging() - set up independently
logger = logging.getLogger("app")
if not logger.handlers:
level_name = getattr(config, "LOG_LEVEL", "INFO")
level = getattr(logging, level_name.upper(), logging.INFO)
logger.setLevel(level)
formatter = logging.Formatter(
getattr(config, "LOG_FORMAT", "%(asctime)s - %(name)s - %(levelname)s - %(message)s")
)
# Console handler
ch = logging.StreamHandler()
ch.setFormatter(formatter)
logger.addHandler(ch)
# File handler if log file exists
try:
if hasattr(config, 'LOG_FILE'):
fh = logging.FileHandler(config.LOG_FILE)
fh.setFormatter(formatter)
logger.addHandler(fh)
except Exception as e:
print(f"Warning: Could not setup file logging: {e}")
logger.info("=" * 60)
logger.info("Crypto Admin Dashboard Starting")
logger.info("=" * 60)
# Initialize database
db = database.get_database()
# ==================== TAB 1: STATUS ====================
def get_status_tab() -> Tuple[str, str, str]:
"""
Get system status overview.
Returns: (markdown_summary, db_stats_json, system_info_json)
"""
try:
# Get database stats
db_stats = db.get_database_stats()
# Count providers
providers_config_path = config.BASE_DIR / "providers_config_extended.json"
provider_count = 0
if providers_config_path.exists():
with open(providers_config_path, 'r') as f:
providers_data = json.load(f)
provider_count = len(providers_data.get('providers', {}))
# Pool count (from config)
pool_count = 0
if providers_config_path.exists():
with open(providers_config_path, 'r') as f:
providers_data = json.load(f)
pool_count = len(providers_data.get('pool_configurations', []))
# Market snapshot
latest_prices = db.get_latest_prices(3)
market_snapshot = ""
if latest_prices:
for p in latest_prices[:3]:
symbol = p.get('symbol', 'N/A')
price = p.get('price_usd', 0)
change = p.get('percent_change_24h', 0)
market_snapshot += f"**{symbol}**: ${price:,.2f} ({change:+.2f}%)\n"
else:
market_snapshot = "No market data available yet."
# Get API request count from health log
api_requests_count = 0
try:
health_log_path = Path("data/logs/provider_health.jsonl")
if health_log_path.exists():
with open(health_log_path, 'r', encoding='utf-8') as f:
api_requests_count = sum(1 for _ in f)
except Exception as e:
logger.warning(f"Could not get API request stats: {e}")
# Build summary with copy-friendly format
summary = f"""
## π― System Status
**Overall Health**: {"π’ Operational" if db_stats.get('prices_count', 0) > 0 else "π‘ Initializing"}
### Quick Stats
```
Total Providers: {provider_count}
Active Pools: {pool_count}
API Requests: {api_requests_count:,}
Price Records: {db_stats.get('prices_count', 0):,}
News Articles: {db_stats.get('news_count', 0):,}
Unique Symbols: {db_stats.get('unique_symbols', 0)}
```
### Market Snapshot (Top 3)
```
{market_snapshot}
```
**Last Update**: `{datetime.now().strftime("%Y-%m-%d %H:%M:%S")}`
---
### π Provider Details (Copy-Friendly)
```
Total: {provider_count} providers
Config File: providers_config_extended.json
```
"""
# System info
import platform
system_info = {
"Python Version": sys.version.split()[0],
"Platform": platform.platform(),
"Working Directory": str(config.BASE_DIR),
"Database Size": f"{db_stats.get('database_size_mb', 0):.2f} MB",
"Last Price Update": db_stats.get('latest_price_update', 'N/A'),
"Last News Update": db_stats.get('latest_news_update', 'N/A')
}
return summary, json.dumps(db_stats, indent=2), json.dumps(system_info, indent=2)
except Exception as e:
logger.error(f"Error in get_status_tab: {e}\n{traceback.format_exc()}")
return f"β οΈ Error loading status: {str(e)}", "{}", "{}"
def run_diagnostics_from_status(auto_fix: bool) -> str:
"""Run diagnostics from status tab"""
try:
from backend.services.diagnostics_service import DiagnosticsService
diagnostics = DiagnosticsService()
# Run async in sync context
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
report = loop.run_until_complete(diagnostics.run_full_diagnostics(auto_fix=auto_fix))
loop.close()
# Format output
output = f"""
# Diagnostics Report
**Timestamp**: {report.timestamp}
**Duration**: {report.duration_ms:.2f}ms
## Summary
- **Total Issues**: {report.total_issues}
- **Critical**: {report.critical_issues}
- **Warnings**: {report.warnings}
- **Info**: {report.info_issues}
- **Fixed**: {len(report.fixed_issues)}
## Issues
"""
for issue in report.issues:
emoji = {"critical": "π΄", "warning": "π‘", "info": "π΅"}.get(issue.severity, "βͺ")
fixed_mark = " β
FIXED" if issue.auto_fixed else ""
output += f"\n### {emoji} [{issue.category.upper()}] {issue.title}{fixed_mark}\n"
output += f"{issue.description}\n"
if issue.fixable and not issue.auto_fixed:
output += f"**Fix**: `{issue.fix_action}`\n"
return output
except Exception as e:
logger.error(f"Error running diagnostics: {e}")
return f"β Diagnostics failed: {str(e)}"
# ==================== TAB 2: PROVIDERS ====================
def get_providers_table(category_filter: str = "All") -> Any:
"""
Get providers from providers_config_extended.json with enhanced formatting
Returns: DataFrame or dict
"""
try:
providers_path = config.BASE_DIR / "providers_config_extended.json"
if not providers_path.exists():
if PANDAS_AVAILABLE:
return pd.DataFrame({"Error": ["providers_config_extended.json not found"]})
return {"error": "providers_config_extended.json not found"}
with open(providers_path, 'r') as f:
data = json.load(f)
providers = data.get('providers', {})
# Build table data with copy-friendly IDs
table_data = []
for provider_id, provider_info in providers.items():
if category_filter != "All":
if provider_info.get('category', '').lower() != category_filter.lower():
continue
# Format auth status with emoji
auth_status = "β
Yes" if provider_info.get('requires_auth', False) else "β No"
validation = "β
Valid" if provider_info.get('validated', False) else "β³ Pending"
table_data.append({
"Provider ID": provider_id,
"Name": provider_info.get('name', provider_id),
"Category": provider_info.get('category', 'unknown'),
"Type": provider_info.get('type', 'http_json'),
"Base URL": provider_info.get('base_url', 'N/A'),
"Auth Required": auth_status,
"Priority": provider_info.get('priority', 'N/A'),
"Status": validation
})
if PANDAS_AVAILABLE:
return pd.DataFrame(table_data) if table_data else pd.DataFrame({"Message": ["No providers found"]})
else:
return {"providers": table_data} if table_data else {"error": "No providers found"}
except Exception as e:
logger.error(f"Error loading providers: {e}")
if PANDAS_AVAILABLE:
return pd.DataFrame({"Error": [str(e)]})
return {"error": str(e)}
def reload_providers_config() -> Tuple[Any, str]:
"""Reload providers config and return updated table + message with stats"""
try:
# Count providers
providers_path = config.BASE_DIR / "providers_config_extended.json"
with open(providers_path, 'r') as f:
data = json.load(f)
total_providers = len(data.get('providers', {}))
# Count by category
categories = {}
for provider_info in data.get('providers', {}).values():
cat = provider_info.get('category', 'unknown')
categories[cat] = categories.get(cat, 0) + 1
# Force reload by re-reading file
table = get_providers_table("All")
# Build detailed message
message = f"""β
**Providers Reloaded Successfully!**
**Total Providers**: `{total_providers}`
**Reload Time**: `{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}`
**By Category**:
"""
for cat, count in sorted(categories.items(), key=lambda x: x[1], reverse=True)[:10]:
message += f"- {cat}: `{count}`\n"
return table, message
except Exception as e:
logger.error(f"Error reloading providers: {e}")
return get_providers_table("All"), f"β Reload failed: {str(e)}"
def get_provider_categories() -> List[str]:
"""Get unique provider categories"""
try:
providers_path = config.BASE_DIR / "providers_config_extended.json"
if not providers_path.exists():
return ["All"]
with open(providers_path, 'r') as f:
data = json.load(f)
categories = set()
for provider in data.get('providers', {}).values():
cat = provider.get('category', 'unknown')
categories.add(cat)
return ["All"] + sorted(list(categories))
except Exception as e:
logger.error(f"Error getting categories: {e}")
return ["All"]
# ==================== TAB 3: MARKET DATA ====================
def get_market_data_table(search_filter: str = "") -> Any:
"""Get latest market data from database with enhanced formatting"""
try:
prices = db.get_latest_prices(100)
if not prices:
if PANDAS_AVAILABLE:
return pd.DataFrame({"Message": ["No market data available. Click 'Refresh Prices' to collect data."]})
return {"error": "No data available"}
# Filter if search provided
filtered_prices = prices
if search_filter:
search_lower = search_filter.lower()
filtered_prices = [
p for p in prices
if search_lower in p.get('name', '').lower() or search_lower in p.get('symbol', '').lower()
]
table_data = []
for p in filtered_prices:
# Format change with emoji
change = p.get('percent_change_24h', 0)
change_emoji = "π’" if change > 0 else ("π΄" if change < 0 else "βͺ")
table_data.append({
"#": p.get('rank', 999),
"Symbol": p.get('symbol', 'N/A'),
"Name": p.get('name', 'Unknown'),
"Price": f"${p.get('price_usd', 0):,.2f}" if p.get('price_usd') else "N/A",
"24h Change": f"{change_emoji} {change:+.2f}%" if change is not None else "N/A",
"Volume 24h": f"${p.get('volume_24h', 0):,.0f}" if p.get('volume_24h') else "N/A",
"Market Cap": f"${p.get('market_cap', 0):,.0f}" if p.get('market_cap') else "N/A"
})
if PANDAS_AVAILABLE:
df = pd.DataFrame(table_data)
return df.sort_values('#') if not df.empty else pd.DataFrame({"Message": ["No matching data"]})
else:
return {"prices": table_data}
except Exception as e:
logger.error(f"Error getting market data: {e}")
if PANDAS_AVAILABLE:
return pd.DataFrame({"Error": [str(e)]})
return {"error": str(e)}
def refresh_market_data() -> Tuple[Any, str]:
"""Refresh market data by collecting from APIs with detailed stats"""
try:
logger.info("Refreshing market data...")
start_time = time.time()
success, count = collectors.collect_price_data()
duration = time.time() - start_time
# Get database stats
db_stats = db.get_database_stats()
if success:
message = f"""β
**Market Data Refreshed Successfully!**
**Collection Stats**:
- New Records: `{count}`
- Duration: `{duration:.2f}s`
- Time: `{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}`
**Database Stats**:
- Total Price Records: `{db_stats.get('prices_count', 0):,}`
- Unique Symbols: `{db_stats.get('unique_symbols', 0)}`
- Last Update: `{db_stats.get('latest_price_update', 'N/A')}`
"""
else:
message = f"""β οΈ **Collection completed with issues**
- Records Collected: `{count}`
- Duration: `{duration:.2f}s`
- Check logs for details
"""
# Return updated table
table = get_market_data_table("")
return table, message
except Exception as e:
logger.error(f"Error refreshing market data: {e}")
return get_market_data_table(""), f"β Refresh failed: {str(e)}"
def plot_price_history(symbol: str, timeframe: str) -> Any:
"""Plot price history for a symbol"""
if not PLOTLY_AVAILABLE:
return None
try:
# Parse timeframe
hours_map = {"24h": 24, "7d": 168, "30d": 720, "90d": 2160}
hours = hours_map.get(timeframe, 168)
# Get history
history = db.get_price_history(symbol.upper(), hours)
if not history or len(history) < 2:
fig = go.Figure()
fig.add_annotation(
text=f"No historical data for {symbol}",
xref="paper", yref="paper",
x=0.5, y=0.5, showarrow=False
)
return fig
# Extract data
timestamps = [datetime.fromisoformat(h['timestamp'].replace('Z', '+00:00')) if isinstance(h['timestamp'], str) else datetime.now() for h in history]
prices = [h.get('price_usd', 0) for h in history]
# Create plot
fig = go.Figure()
fig.add_trace(go.Scatter(
x=timestamps,
y=prices,
mode='lines',
name='Price',
line=dict(color='#2962FF', width=2)
))
fig.update_layout(
title=f"{symbol} - {timeframe}",
xaxis_title="Time",
yaxis_title="Price (USD)",
hovermode='x unified',
height=400
)
return fig
except Exception as e:
logger.error(f"Error plotting price history: {e}")
fig = go.Figure()
fig.add_annotation(text=f"Error: {str(e)}", xref="paper", yref="paper", x=0.5, y=0.5, showarrow=False)
return fig
# ==================== TAB 4: APL SCANNER ====================
def run_apl_scan() -> str:
"""Run Auto Provider Loader scan"""
try:
logger.info("Running APL scan...")
# Import APL
import auto_provider_loader
# Run scan
apl = auto_provider_loader.AutoProviderLoader()
# Run async in sync context
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
loop.run_until_complete(apl.run())
loop.close()
# Build summary
stats = apl.stats
output = f"""
# APL Scan Complete
**Timestamp**: {stats.timestamp}
**Execution Time**: {stats.execution_time_sec:.2f}s
## HTTP Providers
- **Candidates**: {stats.total_http_candidates}
- **Valid**: {stats.http_valid} β
- **Invalid**: {stats.http_invalid} β
- **Conditional**: {stats.http_conditional} β οΈ
## HuggingFace Models
- **Candidates**: {stats.total_hf_candidates}
- **Valid**: {stats.hf_valid} β
- **Invalid**: {stats.hf_invalid} β
- **Conditional**: {stats.hf_conditional} β οΈ
## Total Active Providers
**{stats.total_active_providers}** providers are now active.
---
β
All valid providers have been integrated into `providers_config_extended.json`.
See `PROVIDER_AUTO_DISCOVERY_REPORT.md` for full details.
"""
return output
except Exception as e:
logger.error(f"Error running APL: {e}\n{traceback.format_exc()}")
return f"β APL scan failed: {str(e)}\n\nCheck logs for details."
def get_apl_report() -> str:
"""Get last APL report"""
try:
report_path = config.BASE_DIR / "PROVIDER_AUTO_DISCOVERY_REPORT.md"
if report_path.exists():
with open(report_path, 'r') as f:
return f.read()
else:
return "No APL report found. Run a scan first."
except Exception as e:
logger.error(f"Error reading APL report: {e}")
return f"Error reading report: {str(e)}"
# ==================== TAB 5: HF MODELS ====================
def get_hf_models_status() -> Any:
"""Get HuggingFace models status with unified display"""
try:
import ai_models
model_info = ai_models.get_model_info()
# Build unified table - avoid duplicates
table_data = []
seen_models = set()
# First, add loaded models
if model_info.get('models_initialized'):
for model_name, loaded in model_info.get('loaded_models', {}).items():
if model_name not in seen_models:
status = "β
Loaded" if loaded else "β Failed"
model_id = config.HUGGINGFACE_MODELS.get(model_name, 'N/A')
table_data.append({
"Model Type": model_name,
"Model ID": model_id,
"Status": status,
"Source": "config.py"
})
seen_models.add(model_name)
# Then add configured but not loaded models
for model_type, model_id in config.HUGGINGFACE_MODELS.items():
if model_type not in seen_models:
table_data.append({
"Model Type": model_type,
"Model ID": model_id,
"Status": "β³ Not Loaded",
"Source": "config.py"
})
seen_models.add(model_type)
# Add models from providers_config if any
try:
providers_path = config.BASE_DIR / "providers_config_extended.json"
if providers_path.exists():
with open(providers_path, 'r') as f:
providers_data = json.load(f)
for provider_id, provider_info in providers_data.get('providers', {}).items():
if provider_info.get('category') == 'hf-model':
model_name = provider_info.get('name', provider_id)
if model_name not in seen_models:
table_data.append({
"Model Type": model_name,
"Model ID": provider_id,
"Status": "π Registry",
"Source": "providers_config"
})
seen_models.add(model_name)
except Exception as e:
logger.warning(f"Could not load models from providers_config: {e}")
if not table_data:
table_data.append({
"Model Type": "No models",
"Model ID": "N/A",
"Status": "β οΈ None configured",
"Source": "N/A"
})
if PANDAS_AVAILABLE:
return pd.DataFrame(table_data)
else:
return {"models": table_data}
except Exception as e:
logger.error(f"Error getting HF models status: {e}")
if PANDAS_AVAILABLE:
return pd.DataFrame({"Error": [str(e)]})
return {"error": str(e)}
def test_hf_model(model_name: str, test_text: str) -> str:
"""Test a HuggingFace model with text"""
try:
if not test_text or not test_text.strip():
return "β οΈ Please enter test text"
import ai_models
if model_name in ["sentiment_twitter", "sentiment_financial", "sentiment"]:
# Test sentiment analysis
result = ai_models.analyze_sentiment(test_text)
output = f"""
## Sentiment Analysis Result
**Input**: {test_text}
**Label**: {result.get('label', 'N/A')}
**Score**: {result.get('score', 0):.4f}
**Confidence**: {result.get('confidence', 0):.4f}
**Details**:
```json
{json.dumps(result.get('details', {}), indent=2)}
```
"""
return output
elif model_name == "summarization":
# Test summarization
summary = ai_models.summarize_text(test_text)
output = f"""
## Summarization Result
**Original** ({len(test_text)} chars):
{test_text}
**Summary** ({len(summary)} chars):
{summary}
"""
return output
else:
return f"β οΈ Model '{model_name}' not recognized or not testable"
except Exception as e:
logger.error(f"Error testing HF model: {e}")
return f"β Model test failed: {str(e)}"
def initialize_hf_models() -> Tuple[Any, str]:
"""Initialize HuggingFace models"""
try:
import ai_models
result = ai_models.initialize_models()
if result.get('success'):
message = f"β
Models initialized successfully at {datetime.now().strftime('%H:%M:%S')}"
else:
message = f"β οΈ Model initialization completed with warnings: {result.get('status')}"
# Return updated table
table = get_hf_models_status()
return table, message
except Exception as e:
logger.error(f"Error initializing HF models: {e}")
return get_hf_models_status(), f"β Initialization failed: {str(e)}"
# ==================== TAB 6: DIAGNOSTICS ====================
def run_full_diagnostics(auto_fix: bool) -> str:
"""Run full system diagnostics"""
try:
from backend.services.diagnostics_service import DiagnosticsService
logger.info(f"Running diagnostics (auto_fix={auto_fix})...")
diagnostics = DiagnosticsService()
# Run async in sync context
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
report = loop.run_until_complete(diagnostics.run_full_diagnostics(auto_fix=auto_fix))
loop.close()
# Format detailed output
output = f"""
# π§ System Diagnostics Report
**Generated**: {report.timestamp}
**Duration**: {report.duration_ms:.2f}ms
---
## π Summary
| Metric | Count |
|--------|-------|
| **Total Issues** | {report.total_issues} |
| **Critical** π΄ | {report.critical_issues} |
| **Warnings** π‘ | {report.warnings} |
| **Info** π΅ | {report.info_issues} |
| **Auto-Fixed** β
| {len(report.fixed_issues)} |
---
## π Issues Detected
"""
if not report.issues:
output += "β
**No issues detected!** System is healthy.\n"
else:
# Group by category
by_category = {}
for issue in report.issues:
cat = issue.category
if cat not in by_category:
by_category[cat] = []
by_category[cat].append(issue)
for category, issues in sorted(by_category.items()):
output += f"\n### {category.upper()}\n\n"
for issue in issues:
emoji = {"critical": "π΄", "warning": "π‘", "info": "π΅"}.get(issue.severity, "βͺ")
fixed_mark = " β
**AUTO-FIXED**" if issue.auto_fixed else ""
output += f"**{emoji} {issue.title}**{fixed_mark}\n\n"
output += f"{issue.description}\n\n"
if issue.fixable and issue.fix_action and not issue.auto_fixed:
output += f"π‘ **Fix**: `{issue.fix_action}`\n\n"
output += "---\n\n"
# System info
output += "\n## π» System Information\n\n"
output += "```json\n"
output += json.dumps(report.system_info, indent=2)
output += "\n```\n"
return output
except Exception as e:
logger.error(f"Error running diagnostics: {e}\n{traceback.format_exc()}")
return f"β Diagnostics failed: {str(e)}\n\nCheck logs for details."
# ==================== TAB 7: LOGS ====================
def get_logs(log_type: str = "recent", lines: int = 100) -> str:
"""Get system logs with copy-friendly format"""
try:
log_file = config.LOG_FILE
if not log_file.exists():
return "β οΈ Log file not found"
# Read log file
with open(log_file, 'r') as f:
all_lines = f.readlines()
# Filter based on log_type
if log_type == "errors":
filtered_lines = [line for line in all_lines if 'ERROR' in line or 'CRITICAL' in line]
elif log_type == "warnings":
filtered_lines = [line for line in all_lines if 'WARNING' in line]
else: # recent
filtered_lines = all_lines
# Get last N lines
recent_lines = filtered_lines[-lines:] if len(filtered_lines) > lines else filtered_lines
if not recent_lines:
return f"βΉοΈ No {log_type} logs found"
# Format output with line numbers for easy reference
output = f"# π {log_type.upper()} Logs (Last {len(recent_lines)} lines)\n\n"
output += "**Quick Stats:**\n"
output += f"- Total lines shown: `{len(recent_lines)}`\n"
output += f"- Log file: `{log_file}`\n"
output += f"- Type: `{log_type}`\n\n"
output += "---\n\n"
output += "```log\n"
for i, line in enumerate(recent_lines, 1):
output += f"{i:4d} | {line}"
output += "\n```\n"
output += "\n---\n"
output += "π‘ **Tip**: You can now copy individual lines or the entire log block\n"
return output
except Exception as e:
logger.error(f"Error reading logs: {e}")
return f"β Error reading logs: {str(e)}"
def clear_logs() -> str:
"""Clear log file"""
try:
log_file = config.LOG_FILE
if log_file.exists():
# Backup first
backup_path = log_file.parent / f"{log_file.name}.backup.{int(datetime.now().timestamp())}"
import shutil
shutil.copy2(log_file, backup_path)
# Clear
with open(log_file, 'w') as f:
f.write("")
logger.info("Log file cleared")
return f"β
Logs cleared (backup saved to {backup_path.name})"
else:
return "β οΈ No log file to clear"
except Exception as e:
logger.error(f"Error clearing logs: {e}")
return f"β Error clearing logs: {str(e)}"
# ==================== GRADIO INTERFACE ====================
def build_interface():
"""Build the complete Gradio Blocks interface"""
with gr.Blocks(title="Crypto Admin Dashboard", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π Crypto Data Aggregator - Admin Dashboard
**Real-time cryptocurrency data aggregation and analysis platform**
Features: Provider Management | Market Data | Auto Provider Loader | HF Models | System Diagnostics
""")
with gr.Tabs():
# ==================== TAB 1: STATUS ====================
with gr.Tab("π Status"):
gr.Markdown("### System Status Overview")
with gr.Row():
status_refresh_btn = gr.Button("π Refresh Status", variant="primary")
status_diag_btn = gr.Button("π§ Run Quick Diagnostics")
status_summary = gr.Markdown()
with gr.Row():
with gr.Column():
gr.Markdown("#### Database Statistics")
db_stats_json = gr.JSON()
with gr.Column():
gr.Markdown("#### System Information")
system_info_json = gr.JSON()
diag_output = gr.Markdown()
# Load initial status
demo.load(
fn=get_status_tab,
outputs=[status_summary, db_stats_json, system_info_json]
)
# Refresh button
status_refresh_btn.click(
fn=get_status_tab,
outputs=[status_summary, db_stats_json, system_info_json]
)
# Quick diagnostics
status_diag_btn.click(
fn=lambda: run_diagnostics_from_status(False),
outputs=diag_output
)
# ==================== TAB 2: PROVIDERS ====================
with gr.Tab("π Providers"):
gr.Markdown("### API Provider Management")
with gr.Row():
provider_category = gr.Dropdown(
label="Filter by Category",
choices=get_provider_categories(),
value="All"
)
provider_reload_btn = gr.Button("π Reload Providers", variant="primary")
providers_table = gr.Dataframe(
label="Providers",
interactive=False,
wrap=True
) if PANDAS_AVAILABLE else gr.JSON(label="Providers")
provider_status = gr.Textbox(label="Status", interactive=False)
# Load initial providers
demo.load(
fn=lambda: get_providers_table("All"),
outputs=providers_table
)
# Category filter
provider_category.change(
fn=get_providers_table,
inputs=provider_category,
outputs=providers_table
)
# Reload button
provider_reload_btn.click(
fn=reload_providers_config,
outputs=[providers_table, provider_status]
)
# ==================== TAB 3: MARKET DATA ====================
with gr.Tab("π Market Data"):
gr.Markdown("### Live Cryptocurrency Market Data")
with gr.Row():
market_search = gr.Textbox(
label="Search",
placeholder="Search by name or symbol..."
)
market_refresh_btn = gr.Button("π Refresh Prices", variant="primary")
market_table = gr.Dataframe(
label="Market Data",
interactive=False,
wrap=True,
height=400
) if PANDAS_AVAILABLE else gr.JSON(label="Market Data")
market_status = gr.Textbox(label="Status", interactive=False)
# Price chart section
if PLOTLY_AVAILABLE:
gr.Markdown("#### Price History Chart")
with gr.Row():
chart_symbol = gr.Textbox(
label="Symbol",
placeholder="BTC",
value="BTC"
)
chart_timeframe = gr.Dropdown(
label="Timeframe",
choices=["24h", "7d", "30d", "90d"],
value="7d"
)
chart_plot_btn = gr.Button("π Plot")
price_chart = gr.Plot(label="Price History")
chart_plot_btn.click(
fn=plot_price_history,
inputs=[chart_symbol, chart_timeframe],
outputs=price_chart
)
# Load initial data
demo.load(
fn=lambda: get_market_data_table(""),
outputs=market_table
)
# Search
market_search.change(
fn=get_market_data_table,
inputs=market_search,
outputs=market_table
)
# Refresh
market_refresh_btn.click(
fn=refresh_market_data,
outputs=[market_table, market_status]
)
# ==================== TAB 4: APL SCANNER ====================
with gr.Tab("π APL Scanner"):
gr.Markdown("### Auto Provider Loader")
gr.Markdown("Automatically discover, validate, and integrate API providers and HuggingFace models.")
with gr.Row():
apl_scan_btn = gr.Button("βΆοΈ Run APL Scan", variant="primary", size="lg")
apl_report_btn = gr.Button("π View Last Report")
apl_output = gr.Markdown()
apl_scan_btn.click(
fn=run_apl_scan,
outputs=apl_output
)
apl_report_btn.click(
fn=get_apl_report,
outputs=apl_output
)
# Load last report on startup
demo.load(
fn=get_apl_report,
outputs=apl_output
)
# ==================== TAB 5: HF MODELS ====================
with gr.Tab("π€ HF Models"):
gr.Markdown("### HuggingFace Models Status & Testing")
with gr.Row():
hf_init_btn = gr.Button("π Initialize Models", variant="primary")
hf_refresh_btn = gr.Button("π Refresh Status")
hf_models_table = gr.Dataframe(
label="Models",
interactive=False
) if PANDAS_AVAILABLE else gr.JSON(label="Models")
hf_status = gr.Textbox(label="Status", interactive=False)
gr.Markdown("#### Test Model")
with gr.Row():
test_model_dropdown = gr.Dropdown(
label="Model",
choices=["sentiment", "sentiment_twitter", "sentiment_financial", "summarization"],
value="sentiment"
)
test_input = gr.Textbox(
label="Test Input",
placeholder="Enter text to test the model...",
lines=3
)
test_btn = gr.Button("βΆοΈ Run Test", variant="secondary")
test_output = gr.Markdown(label="Test Output")
# Load initial status
demo.load(
fn=get_hf_models_status,
outputs=hf_models_table
)
# Initialize models
hf_init_btn.click(
fn=initialize_hf_models,
outputs=[hf_models_table, hf_status]
)
# Refresh status
hf_refresh_btn.click(
fn=get_hf_models_status,
outputs=hf_models_table
)
# Test model
test_btn.click(
fn=test_hf_model,
inputs=[test_model_dropdown, test_input],
outputs=test_output
)
# ==================== TAB 6: DIAGNOSTICS ====================
with gr.Tab("π§ Diagnostics"):
gr.Markdown("### System Diagnostics & Auto-Repair")
with gr.Row():
diag_run_btn = gr.Button("βΆοΈ Run Diagnostics", variant="primary")
diag_autofix_btn = gr.Button("π§ Run with Auto-Fix", variant="secondary")
diagnostics_output = gr.Markdown()
diag_run_btn.click(
fn=lambda: run_full_diagnostics(False),
outputs=diagnostics_output
)
diag_autofix_btn.click(
fn=lambda: run_full_diagnostics(True),
outputs=diagnostics_output
)
# ==================== TAB 7: LOGS ====================
with gr.Tab("π Logs"):
gr.Markdown("### System Logs Viewer")
with gr.Row():
log_type = gr.Dropdown(
label="Log Type",
choices=["recent", "errors", "warnings"],
value="recent"
)
log_lines = gr.Slider(
label="Lines to Show",
minimum=10,
maximum=500,
value=100,
step=10
)
with gr.Row():
log_refresh_btn = gr.Button("π Refresh Logs", variant="primary")
log_clear_btn = gr.Button("ποΈ Clear Logs", variant="secondary")
logs_output = gr.Markdown()
log_clear_status = gr.Textbox(label="Status", interactive=False, visible=False)
# Load initial logs
demo.load(
fn=lambda: get_logs("recent", 100),
outputs=logs_output
)
# Refresh logs
log_refresh_btn.click(
fn=get_logs,
inputs=[log_type, log_lines],
outputs=logs_output
)
# Update when dropdown changes
log_type.change(
fn=get_logs,
inputs=[log_type, log_lines],
outputs=logs_output
)
# Clear logs
log_clear_btn.click(
fn=clear_logs,
outputs=log_clear_status
).then(
fn=lambda: get_logs("recent", 100),
outputs=logs_output
)
# Footer
gr.Markdown("""
---
**Crypto Data Aggregator Admin Dashboard** | Real Data Only | No Mock/Fake Data
""")
return demo
# ==================== MAIN ENTRY POINT ====================
demo = build_interface()
if __name__ == "__main__":
logger.info("Launching Gradio dashboard...")
# Try to mount FastAPI app for API endpoints
try:
from fastapi import FastAPI as FastAPIApp
from fastapi.middleware.wsgi import WSGIMiddleware
import uvicorn
from threading import Thread
import time
# Import the FastAPI app from hf_unified_server
try:
from hf_unified_server import app as fastapi_app
logger.info("β
FastAPI app imported successfully")
# Start FastAPI server in a separate thread on port 7861
def run_fastapi():
uvicorn.run(
fastapi_app,
host="0.0.0.0",
port=7861,
log_level="info"
)
fastapi_thread = Thread(target=run_fastapi, daemon=True)
fastapi_thread.start()
time.sleep(2) # Give FastAPI time to start
logger.info("β
FastAPI server started on port 7861")
except ImportError as e:
logger.warning(f"β οΈ Could not import FastAPI app: {e}")
except Exception as e:
logger.warning(f"β οΈ Could not start FastAPI server: {e}")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)
|