File size: 16,599 Bytes
b190b45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
#!/usr/bin/env python3
"""

Direct Model Loader Service - NO PIPELINES

Loads Hugging Face models directly using AutoModel and AutoTokenizer

NO PIPELINE USAGE - Direct model inference only

"""

import logging
import os
from typing import Dict, Any, Optional, List
from datetime import datetime
import torch
import numpy as np
from pathlib import Path

logger = logging.getLogger(__name__)

# Try to import transformers
try:
    from transformers import (
        AutoTokenizer, 
        AutoModelForSequenceClassification,
        AutoModelForCausalLM,
        BertTokenizer,
        BertForSequenceClassification
    )
    TRANSFORMERS_AVAILABLE = True
except ImportError:
    TRANSFORMERS_AVAILABLE = False
    logger.error("❌ Transformers library not available. Install with: pip install transformers torch")


class DirectModelLoader:
    """

    Direct Model Loader - NO PIPELINES

    Loads models directly and performs inference without using Hugging Face pipelines

    """
    
    def __init__(self, cache_dir: Optional[str] = None):
        """

        Initialize Direct Model Loader

        

        Args:

            cache_dir: Directory to cache models (default: ~/.cache/huggingface)

        """
        if not TRANSFORMERS_AVAILABLE:
            raise ImportError("Transformers library is required. Install with: pip install transformers torch")
        
        self.cache_dir = cache_dir or os.path.expanduser("~/.cache/huggingface")
        self.models = {}
        self.tokenizers = {}
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        
        logger.info(f"πŸš€ Direct Model Loader initialized")
        logger.info(f"   Device: {self.device}")
        logger.info(f"   Cache directory: {self.cache_dir}")
        
        # Model configurations - DIRECT LOADING ONLY
        # Ordered by preference (most reliable first)
        self.model_configs = {
            "cryptobert_kk08": {
                "model_id": "kk08/CryptoBERT",
                "model_class": "BertForSequenceClassification",
                "task": "sentiment-analysis",
                "description": "CryptoBERT by KK08 for crypto sentiment",
                "loaded": False,
                "requires_auth": False,
                "priority": 1
            },
            "twitter_sentiment": {
                "model_id": "cardiffnlp/twitter-roberta-base-sentiment-latest",
                "model_class": "AutoModelForSequenceClassification",
                "task": "sentiment-analysis",
                "description": "Twitter RoBERTa for sentiment analysis",
                "loaded": False,
                "requires_auth": False,
                "priority": 2
            },
            "finbert": {
                "model_id": "ProsusAI/finbert",
                "model_class": "AutoModelForSequenceClassification",
                "task": "sentiment-analysis",
                "description": "FinBERT for financial sentiment",
                "loaded": False,
                "requires_auth": False,
                "priority": 3
            },
            "cryptobert_elkulako": {
                "model_id": "ElKulako/cryptobert",
                "model_class": "BertForSequenceClassification",
                "task": "sentiment-analysis",
                "description": "CryptoBERT by ElKulako for crypto sentiment",
                "loaded": False,
                "requires_auth": True,
                "priority": 4
            }
        }
    
    async def load_model(self, model_key: str) -> Dict[str, Any]:
        """

        Load a specific model directly (NO PIPELINE)

        

        Args:

            model_key: Key of the model to load

            

        Returns:

            Status dict with model info

        """
        if model_key not in self.model_configs:
            raise ValueError(f"Unknown model: {model_key}")
        
        config = self.model_configs[model_key]
        
        # Check if already loaded
        if model_key in self.models and model_key in self.tokenizers:
            logger.info(f"βœ… Model {model_key} already loaded")
            config["loaded"] = True
            return {
                "success": True,
                "model_key": model_key,
                "model_id": config["model_id"],
                "status": "already_loaded",
                "device": self.device
            }
        
        try:
            logger.info(f"πŸ“₯ Loading model: {config['model_id']} (NO PIPELINE)")
            
            # Load tokenizer
            tokenizer = AutoTokenizer.from_pretrained(
                config["model_id"],
                cache_dir=self.cache_dir
            )
            
            # Load model based on class
            if config["model_class"] == "BertForSequenceClassification":
                model = BertForSequenceClassification.from_pretrained(
                    config["model_id"],
                    cache_dir=self.cache_dir
                )
            elif config["model_class"] == "AutoModelForSequenceClassification":
                model = AutoModelForSequenceClassification.from_pretrained(
                    config["model_id"],
                    cache_dir=self.cache_dir
                )
            elif config["model_class"] == "AutoModelForCausalLM":
                model = AutoModelForCausalLM.from_pretrained(
                    config["model_id"],
                    cache_dir=self.cache_dir
                )
            else:
                raise ValueError(f"Unknown model class: {config['model_class']}")
            
            # Move model to device
            model.to(self.device)
            model.eval()  # Set to evaluation mode
            
            # Store model and tokenizer
            self.models[model_key] = model
            self.tokenizers[model_key] = tokenizer
            config["loaded"] = True
            
            logger.info(f"βœ… Model loaded successfully: {config['model_id']}")
            
            return {
                "success": True,
                "model_key": model_key,
                "model_id": config["model_id"],
                "status": "loaded",
                "device": self.device,
                "task": config["task"]
            }
        
        except Exception as e:
            logger.error(f"❌ Failed to load model {model_key}: {e}")
            # Don't raise - allow fallback to other models
            raise Exception(f"Failed to load model {model_key}: {str(e)}")
    
    async def load_all_models(self) -> Dict[str, Any]:
        """

        Load all configured models

        

        Returns:

            Status dict with all models

        """
        results = []
        success_count = 0
        
        for model_key in self.model_configs.keys():
            try:
                result = await self.load_model(model_key)
                results.append(result)
                if result["success"]:
                    success_count += 1
            except Exception as e:
                logger.error(f"❌ Failed to load {model_key}: {e}")
                results.append({
                    "success": False,
                    "model_key": model_key,
                    "error": str(e)
                })
        
        return {
            "success": True,
            "total_models": len(self.model_configs),
            "loaded_models": success_count,
            "failed_models": len(self.model_configs) - success_count,
            "results": results,
            "timestamp": datetime.utcnow().isoformat()
        }
    
    async def predict_sentiment(

        self,

        text: str,

        model_key: str = "cryptobert_elkulako",

        max_length: int = 512

    ) -> Dict[str, Any]:
        """

        Predict sentiment directly (NO PIPELINE)

        

        Args:

            text: Input text

            model_key: Model to use

            max_length: Maximum sequence length

            

        Returns:

            Sentiment prediction

        """
        # Ensure model is loaded
        if model_key not in self.models:
            await self.load_model(model_key)
        
        try:
            model = self.models[model_key]
            tokenizer = self.tokenizers[model_key]
            
            # Tokenize input - NO PIPELINE
            inputs = tokenizer(
                text,
                return_tensors="pt",
                truncation=True,
                padding=True,
                max_length=max_length
            )
            
            # Move inputs to device
            inputs = {k: v.to(self.device) for k, v in inputs.items()}
            
            # Forward pass - Direct inference
            with torch.no_grad():
                outputs = model(**inputs)
                logits = outputs.logits
            
            # Get predictions - Direct calculation
            probs = torch.softmax(logits, dim=1)
            predicted_class = torch.argmax(probs, dim=1).item()
            confidence = probs[0][predicted_class].item()
            
            # Map class to label (standard 3-class sentiment)
            label_map = {0: "negative", 1: "neutral", 2: "positive"}
            
            # Try to get actual labels from model config
            if hasattr(model.config, "id2label"):
                label = model.config.id2label.get(predicted_class, label_map.get(predicted_class, "unknown"))
            else:
                label = label_map.get(predicted_class, "unknown")
            
            # Get all class probabilities
            all_probs = {
                label_map.get(i, f"class_{i}"): probs[0][i].item()
                for i in range(probs.shape[1])
            }
            
            logger.info(f"βœ… Sentiment predicted: {label} (confidence: {confidence:.4f})")
            
            return {
                "success": True,
                "text": text[:100] + "..." if len(text) > 100 else text,
                "sentiment": label,
                "label": label,
                "score": confidence,
                "confidence": confidence,
                "all_scores": all_probs,
                "model": model_key,
                "model_id": self.model_configs[model_key]["model_id"],
                "inference_type": "direct_no_pipeline",
                "device": self.device,
                "timestamp": datetime.utcnow().isoformat()
            }
        
        except Exception as e:
            logger.error(f"❌ Sentiment prediction failed: {e}")
            raise Exception(f"Sentiment prediction failed: {str(e)}")
    
    async def batch_predict_sentiment(

        self,

        texts: List[str],

        model_key: str = "cryptobert_elkulako",

        max_length: int = 512

    ) -> Dict[str, Any]:
        """

        Batch sentiment prediction (NO PIPELINE)

        

        Args:

            texts: List of input texts

            model_key: Model to use

            max_length: Maximum sequence length

            

        Returns:

            Batch predictions

        """
        # Ensure model is loaded
        if model_key not in self.models:
            await self.load_model(model_key)
        
        try:
            model = self.models[model_key]
            tokenizer = self.tokenizers[model_key]
            
            # Tokenize all inputs - NO PIPELINE
            inputs = tokenizer(
                texts,
                return_tensors="pt",
                truncation=True,
                padding=True,
                max_length=max_length
            )
            
            # Move inputs to device
            inputs = {k: v.to(self.device) for k, v in inputs.items()}
            
            # Forward pass - Direct inference
            with torch.no_grad():
                outputs = model(**inputs)
                logits = outputs.logits
            
            # Get predictions - Direct calculation
            probs = torch.softmax(logits, dim=1)
            predicted_classes = torch.argmax(probs, dim=1).cpu().numpy()
            confidences = probs.max(dim=1).values.cpu().numpy()
            
            # Map classes to labels
            label_map = {0: "negative", 1: "neutral", 2: "positive"}
            
            # Build results
            results = []
            for i, text in enumerate(texts):
                predicted_class = predicted_classes[i]
                confidence = confidences[i]
                
                if hasattr(model.config, "id2label"):
                    label = model.config.id2label.get(predicted_class, label_map.get(predicted_class, "unknown"))
                else:
                    label = label_map.get(predicted_class, "unknown")
                
                results.append({
                    "text": text[:100] + "..." if len(text) > 100 else text,
                    "sentiment": label,
                    "label": label,
                    "score": float(confidence),
                    "confidence": float(confidence)
                })
            
            logger.info(f"βœ… Batch sentiment predicted for {len(texts)} texts")
            
            return {
                "success": True,
                "count": len(results),
                "results": results,
                "model": model_key,
                "model_id": self.model_configs[model_key]["model_id"],
                "inference_type": "direct_batch_no_pipeline",
                "device": self.device,
                "timestamp": datetime.utcnow().isoformat()
            }
        
        except Exception as e:
            logger.error(f"❌ Batch sentiment prediction failed: {e}")
            raise Exception(f"Batch sentiment prediction failed: {str(e)}")
    
    def get_loaded_models(self) -> Dict[str, Any]:
        """

        Get list of loaded models

        

        Returns:

            Dict with loaded models info

        """
        models_info = []
        for model_key, config in self.model_configs.items():
            models_info.append({
                "model_key": model_key,
                "model_id": config["model_id"],
                "task": config["task"],
                "description": config["description"],
                "loaded": model_key in self.models,
                "device": self.device if model_key in self.models else None
            })
        
        return {
            "success": True,
            "total_configured": len(self.model_configs),
            "total_loaded": len(self.models),
            "device": self.device,
            "models": models_info,
            "timestamp": datetime.utcnow().isoformat()
        }
    
    def unload_model(self, model_key: str) -> Dict[str, Any]:
        """

        Unload a specific model from memory

        

        Args:

            model_key: Key of the model to unload

            

        Returns:

            Status dict

        """
        if model_key not in self.models:
            return {
                "success": False,
                "model_key": model_key,
                "message": "Model not loaded"
            }
        
        try:
            # Remove model and tokenizer
            del self.models[model_key]
            del self.tokenizers[model_key]
            
            # Update config
            self.model_configs[model_key]["loaded"] = False
            
            # Clear CUDA cache if using GPU
            if self.device == "cuda":
                torch.cuda.empty_cache()
            
            logger.info(f"βœ… Model unloaded: {model_key}")
            
            return {
                "success": True,
                "model_key": model_key,
                "message": "Model unloaded successfully"
            }
        
        except Exception as e:
            logger.error(f"❌ Failed to unload model {model_key}: {e}")
            return {
                "success": False,
                "model_key": model_key,
                "error": str(e)
            }


# Global instance
direct_model_loader = DirectModelLoader()


# Export
__all__ = ["DirectModelLoader", "direct_model_loader"]