File size: 29,972 Bytes
d6d843f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 |
# π Crypto-DT-Source: Complete HuggingFace Deployment Prompt
**Purpose:** Complete guide to activate ALL features in the Crypto-DT-Source project for production deployment on HuggingFace Spaces
**Target Environment:** HuggingFace Spaces + Python 3.11+
**Deployment Season:** Q4 2025
**Status:** Ready for Implementation
---
## π Executive Summary
This prompt provides a **complete roadmap** to transform Crypto-DT-Source from a monitoring platform into a **fully-functional cryptocurrency data aggregation service**. All 50+ endpoints will be connected to real data sources, database persistence will be integrated, AI models will be loaded, and the system will be optimized for HuggingFace Spaces deployment.
**Expected Outcome:**
- β
Real crypto market data (live prices, OHLCV, trending coins)
- β
Historical data storage in SQLite
- β
AI-powered sentiment analysis using HuggingFace transformers
- β
Authentication + rate limiting on all endpoints
- β
WebSocket real-time streaming
- β
Provider health monitoring with intelligent failover
- β
Automatic provider discovery
- β
Full diagnostic and monitoring capabilities
- β
Production-ready Docker deployment to HF Spaces
---
## π― Implementation Priorities (Phase 1-4)
### **Phase 1: Core Data Integration (CRITICAL)**
*Goal: Replace all mock data with real API calls*
#### 1.1 Market Data Endpoints
**Files to modify:**
- `api/endpoints.py` - `/api/market`, `/api/prices`
- `collectors/market_data_extended.py` - Real price fetching
- `api_server_extended.py` - FastAPI endpoints
**Requirements:**
- Remove all hardcoded mock data from endpoints
- Implement real API calls to CoinGecko, CoinCap, Binance
- Use async/await pattern for non-blocking calls
- Implement caching layer (5-minute TTL for prices)
- Add error handling with provider fallback
**Implementation Steps:**
```python
# Example: Replace mock market data with real provider data
GET /api/market
βββ Call ProviderManager.get_best_provider('market_data')
βββ Execute async request to provider
βββ Cache response (5 min TTL)
βββ Return real BTC/ETH prices instead of mock
βββ Fallback to secondary provider on failure
GET /api/prices?symbols=BTC,ETH,SOL
βββ Parse symbol list
βββ Call ProviderManager for each symbol
βββ Aggregate responses
βββ Return real-time price data
GET /api/trending
βββ Call CoinGecko trending endpoint
βββ Store in database
βββ Return top 7 trending coins
GET /api/ohlcv?symbol=BTCUSDT&interval=1h&limit=100
βββ Call Binance OHLCV endpoint
βββ Validate symbol format
βββ Apply caching (15-min TTL)
βββ Return historical OHLCV data
```
**Success Criteria:**
- [ ] All endpoints return real data from providers
- [ ] Caching implemented with configurable TTL
- [ ] Provider failover working (when primary fails)
- [ ] Response times < 2 seconds
- [ ] No hardcoded mock data in endpoint responses
---
#### 1.2 DeFi Data Endpoints
**Files to modify:**
- `api_server_extended.py` - `/api/defi` endpoint
- `collectors/` - Add DeFi collector
**Requirements:**
- Fetch TVL data from DeFi Llama API
- Track top DeFi protocols
- Cache for 1 hour (DeFi data updates less frequently)
**Implementation:**
```python
GET /api/defi
βββ Call DeFi Llama: GET /protocols
βββ Filter top 20 by TVL
βββ Parse response (name, TVL, chain, symbol)
βββ Store in database (defi_protocols table)
βββ Return with timestamp
GET /api/defi/tvl-chart
βββ Query historical TVL from database
βββ Aggregate by date
βββ Return 30-day TVL trend
```
---
#### 1.3 News & Sentiment Integration
**Files to modify:**
- `collectors/sentiment_extended.py`
- `api/endpoints.py` - `/api/sentiment` endpoint
**Requirements:**
- Fetch news from RSS feeds (CoinDesk, Cointelegraph, etc.)
- Implement real HuggingFace sentiment analysis (NOT keyword matching)
- Store sentiment scores in database
- Track Fear & Greed Index
**Implementation:**
```python
GET /api/sentiment
βββ Query recent news from database
βββ Load HuggingFace model: distilbert-base-uncased-finetuned-sst-2-english
βββ Analyze each headline/article
βββ Calculate aggregate sentiment score
βββ Return: {overall_sentiment, fear_greed_index, top_sentiments}
GET /api/news
βββ Fetch from RSS feeds (configurable)
βββ Run through sentiment analyzer
βββ Store in database (news table with sentiment)
βββ Return paginated results
POST /api/analyze/text
βββ Accept raw text input
βββ Run HuggingFace sentiment model
βββ Return: {text, sentiment, confidence, label}
```
---
### **Phase 2: Database Integration (HIGH PRIORITY)**
*Goal: Full persistent storage of all data*
#### 2.1 Database Schema Activation
**Files:**
- `database/models.py` - Define all tables
- `database/migrations.py` - Schema setup
- `database/db_manager.py` - Connection management
**Tables to Activate:**
```sql
-- Core tables
prices (id, symbol, price, timestamp, provider)
ohlcv (id, symbol, open, high, low, close, volume, timestamp)
news (id, title, content, sentiment, source, timestamp)
defi_protocols (id, name, tvl, chain, timestamp)
market_snapshots (id, btc_price, eth_price, market_cap, timestamp)
-- Metadata tables
providers (id, name, status, health_score, last_check)
pools (id, name, strategy, created_at)
api_calls (id, endpoint, provider, response_time, status)
user_requests (id, ip_address, endpoint, timestamp)
```
**Implementation:**
```python
# In api_server_extended.py startup:
@app.on_event("startup")
async def startup_event():
# Initialize database
db_manager = DBManager()
await db_manager.initialize()
# Run migrations
await db_manager.run_migrations()
# Create tables if not exist
await db_manager.create_all_tables()
# Verify connectivity
health = await db_manager.health_check()
logger.info(f"Database initialized: {health}")
```
#### 2.2 API Endpoints β Database Integration
**Pattern to implement:**
```python
# Write pattern: After fetching real data, store it
async def store_market_snapshot():
# Fetch real data
prices = await provider_manager.get_market_data()
# Store in database
async with db.session() as session:
snapshot = MarketSnapshot(
btc_price=prices['BTC'],
eth_price=prices['ETH'],
market_cap=prices['market_cap'],
timestamp=datetime.now()
)
session.add(snapshot)
await session.commit()
return prices
# Read pattern: Query historical data
@app.get("/api/prices/history/{symbol}")
async def get_price_history(symbol: str, days: int = 30):
async with db.session() as session:
history = await session.query(Price).filter(
Price.symbol == symbol,
Price.timestamp >= datetime.now() - timedelta(days=days)
).all()
return [{"price": p.price, "timestamp": p.timestamp} for p in history]
```
**Success Criteria:**
- [ ] All real-time data is persisted to database
- [ ] Historical queries return > 30 days of data
- [ ] Database is queried for price history endpoints
- [ ] Migrations run automatically on startup
- [ ] No data loss on server restart
---
### **Phase 3: AI & Sentiment Analysis (MEDIUM PRIORITY)**
*Goal: Real ML-powered sentiment analysis*
#### 3.1 Load HuggingFace Models
**Files:**
- `ai_models.py` - Model loading and inference
- Update `requirements.txt` with torch, transformers
**Models to Load:**
```python
# Sentiment Analysis
SENTIMENT_MODELS = [
"distilbert-base-uncased-finetuned-sst-2-english", # Fast, accurate
"cardiffnlp/twitter-roberta-base-sentiment-latest", # Social media optimized
"ProsusAI/finBERT", # Financial sentiment
]
# Crypto-specific models
CRYPTO_MODELS = [
"EleutherAI/gpt-neo-125M", # General purpose (lightweight)
"facebook/opt-125m", # Instruction following
]
# Zero-shot classification for custom sentiment
"facebook/bart-large-mnli" # Multi-class sentiment (bullish/bearish/neutral)
```
**Implementation:**
```python
# ai_models.py
class AIModelManager:
def __init__(self):
self.models = {}
self.device = "cuda" if torch.cuda.is_available() else "cpu"
async def initialize(self):
"""Load all models on startup"""
logger.info("Loading HuggingFace models...")
# Sentiment analysis
self.models['sentiment'] = pipeline(
"sentiment-analysis",
model="distilbert-base-uncased-finetuned-sst-2-english",
device=0 if self.device == "cuda" else -1
)
# Zero-shot for crypto sentiment
self.models['zeroshot'] = pipeline(
"zero-shot-classification",
model="facebook/bart-large-mnli",
device=0 if self.device == "cuda" else -1
)
logger.info("Models loaded successfully")
async def analyze_sentiment(self, text: str) -> dict:
"""Analyze sentiment of text"""
if not self.models.get('sentiment'):
return {"error": "Model not loaded", "sentiment": "unknown"}
result = self.models['sentiment'](text)[0]
return {
"text": text[:100],
"label": result['label'],
"score": result['score'],
"timestamp": datetime.now().isoformat()
}
async def analyze_crypto_sentiment(self, text: str) -> dict:
"""Crypto-specific sentiment (bullish/bearish/neutral)"""
candidate_labels = ["bullish", "bearish", "neutral"]
result = self.models['zeroshot'](text, candidate_labels)
return {
"text": text[:100],
"sentiment": result['labels'][0],
"scores": dict(zip(result['labels'], result['scores'])),
"timestamp": datetime.now().isoformat()
}
# In api_server_extended.py
ai_manager = AIModelManager()
@app.on_event("startup")
async def startup():
await ai_manager.initialize()
@app.post("/api/sentiment/analyze")
async def analyze_sentiment(request: AnalyzeRequest):
"""Real sentiment analysis endpoint"""
result = await ai_manager.analyze_sentiment(request.text)
return result
@app.post("/api/sentiment/crypto-analysis")
async def crypto_sentiment(request: AnalyzeRequest):
"""Crypto-specific sentiment analysis"""
result = await ai_manager.analyze_crypto_sentiment(request.text)
return result
```
#### 3.2 News Sentiment Pipeline
**Implementation:**
```python
# Background task: Analyze news sentiment continuously
async def analyze_news_sentiment():
"""Run every 30 minutes: fetch news and analyze sentiment"""
while True:
try:
# 1. Fetch recent news from feeds
news_items = await fetch_rss_feeds()
# 2. Store news items
for item in news_items:
# 3. Analyze sentiment
sentiment = await ai_manager.analyze_sentiment(item['title'])
# 4. Store in database
async with db.session() as session:
news = News(
title=item['title'],
content=item['content'],
source=item['source'],
sentiment=sentiment['label'],
confidence=sentiment['score'],
timestamp=datetime.now()
)
session.add(news)
await session.commit()
logger.info(f"Analyzed {len(news_items)} news items")
except Exception as e:
logger.error(f"News sentiment pipeline error: {e}")
# Wait 30 minutes
await asyncio.sleep(1800)
# Start in background on app startup
@app.on_event("startup")
async def startup():
asyncio.create_task(analyze_news_sentiment())
```
---
### **Phase 4: Security & Production Setup (HIGH PRIORITY)**
*Goal: Production-ready authentication, rate limiting, and monitoring*
#### 4.1 Authentication Implementation
**Files:**
- `utils/auth.py` - JWT token handling
- `api/security.py` - New file for security middleware
**Implementation:**
```python
# utils/auth.py
from fastapi import Depends, HTTPException, status
from fastapi.security import HTTPBearer, HTTPAuthCredentials
import jwt
from datetime import datetime, timedelta
SECRET_KEY = os.getenv("JWT_SECRET_KEY", "your-secret-key-change-in-production")
ALGORITHM = "HS256"
class AuthManager:
@staticmethod
def create_token(user_id: str, hours: int = 24) -> str:
"""Create JWT token"""
payload = {
"user_id": user_id,
"exp": datetime.utcnow() + timedelta(hours=hours),
"iat": datetime.utcnow()
}
return jwt.encode(payload, SECRET_KEY, algorithm=ALGORITHM)
@staticmethod
def verify_token(token: str) -> str:
"""Verify JWT token"""
try:
payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM])
return payload.get("user_id")
except jwt.ExpiredSignatureError:
raise HTTPException(status_code=401, detail="Token expired")
except jwt.InvalidTokenError:
raise HTTPException(status_code=401, detail="Invalid token")
security = HTTPBearer()
auth_manager = AuthManager()
async def get_current_user(credentials: HTTPAuthCredentials = Depends(security)):
"""Dependency for protected endpoints"""
return auth_manager.verify_token(credentials.credentials)
# In api_server_extended.py
@app.post("/api/auth/token")
async def get_token(api_key: str):
"""Issue JWT token for API key"""
# Validate API key against database
user = await verify_api_key(api_key)
if not user:
raise HTTPException(status_code=401, detail="Invalid API key")
token = auth_manager.create_token(user.id)
return {"access_token": token, "token_type": "bearer"}
# Protected endpoint example
@app.get("/api/protected-data")
async def protected_endpoint(current_user: str = Depends(get_current_user)):
"""This endpoint requires authentication"""
return {"user_id": current_user, "data": "sensitive"}
```
#### 4.2 Rate Limiting
**Files:**
- `utils/rate_limiter_enhanced.py` - Enhanced rate limiter
**Implementation:**
```python
# In api_server_extended.py
from slowapi import Limiter
from slowapi.util import get_remote_address
from slowapi.errors import RateLimitExceeded
limiter = Limiter(key_func=get_remote_address)
app.state.limiter = limiter
# Rate limit configuration
FREE_TIER = "30/minute" # 30 requests per minute
PRO_TIER = "300/minute" # 300 requests per minute
ADMIN_TIER = None # Unlimited
@app.exception_handler(RateLimitExceeded)
async def rate_limit_handler(request, exc):
return JSONResponse(
status_code=429,
content={"error": "Rate limit exceeded", "retry_after": 60}
)
# Apply to endpoints
@app.get("/api/prices")
@limiter.limit(FREE_TIER)
async def get_prices(request: Request):
return await prices_handler()
@app.get("/api/sentiment")
@limiter.limit(FREE_TIER)
async def get_sentiment(request: Request):
return await sentiment_handler()
# Premium endpoints
@app.get("/api/historical-data")
@limiter.limit(PRO_TIER)
async def get_historical_data(request: Request, current_user: str = Depends(get_current_user)):
return await historical_handler()
```
**Tier Configuration:**
```python
RATE_LIMIT_TIERS = {
"free": {
"requests_per_minute": 30,
"requests_per_day": 1000,
"max_symbols": 5,
"data_retention_days": 7
},
"pro": {
"requests_per_minute": 300,
"requests_per_day": 50000,
"max_symbols": 100,
"data_retention_days": 90
},
"enterprise": {
"requests_per_minute": None, # Unlimited
"requests_per_day": None,
"max_symbols": None,
"data_retention_days": None
}
}
```
---
#### 4.3 Monitoring & Diagnostics
**Files:**
- `api/endpoints.py` - Diagnostic endpoints
- `monitoring/health_monitor.py` - Health checks
**Implementation:**
```python
@app.get("/api/health")
async def health_check():
"""Comprehensive health check"""
return {
"status": "healthy",
"timestamp": datetime.now().isoformat(),
"components": {
"database": await check_database(),
"providers": await check_providers(),
"models": await check_models(),
"websocket": await check_websocket(),
"cache": await check_cache()
},
"metrics": {
"uptime_seconds": get_uptime(),
"active_connections": active_ws_count(),
"request_count_1h": get_request_count("1h"),
"average_response_time_ms": get_avg_response_time()
}
}
@app.post("/api/diagnostics/run")
async def run_diagnostics(auto_fix: bool = False):
"""Full system diagnostics"""
issues = []
fixes = []
# Check all components
checks = [
check_database_integrity(),
check_provider_health(),
check_disk_space(),
check_memory_usage(),
check_model_availability(),
check_config_files(),
check_required_directories(),
verify_api_connectivity()
]
results = await asyncio.gather(*checks)
for check in results:
if check['status'] != 'ok':
issues.append(check)
if auto_fix:
fix = await apply_fix(check)
fixes.append(fix)
return {
"timestamp": datetime.now().isoformat(),
"total_checks": len(checks),
"issues_found": len(issues),
"issues": issues,
"fixes_applied": fixes if auto_fix else []
}
@app.get("/api/metrics")
async def get_metrics():
"""System metrics for monitoring"""
return {
"cpu_percent": psutil.cpu_percent(interval=1),
"memory_percent": psutil.virtual_memory().percent,
"disk_percent": psutil.disk_usage('/').percent,
"database_size_mb": get_database_size() / 1024 / 1024,
"active_requests": active_request_count(),
"websocket_connections": active_ws_count(),
"provider_stats": await get_provider_statistics()
}
```
---
### **Phase 5: Background Tasks & Auto-Discovery**
*Goal: Continuous operation with automatic provider discovery*
#### 5.1 Background Tasks
**Files:**
- `scheduler.py` - Task scheduling
- `monitoring/scheduler_comprehensive.py` - Enhanced scheduler
**Tasks to Activate:**
```python
# In api_server_extended.py
@app.on_event("startup")
async def start_background_tasks():
"""Start all background tasks"""
tasks = [
# Data collection tasks
asyncio.create_task(collect_prices_every_5min()),
asyncio.create_task(collect_defi_data_every_hour()),
asyncio.create_task(fetch_news_every_30min()),
asyncio.create_task(analyze_sentiment_every_hour()),
# Health & monitoring tasks
asyncio.create_task(health_check_every_5min()),
asyncio.create_task(broadcast_stats_every_5min()),
asyncio.create_task(cleanup_old_logs_daily()),
asyncio.create_task(backup_database_daily()),
asyncio.create_task(send_diagnostics_hourly()),
# Discovery tasks (optional)
asyncio.create_task(discover_new_providers_daily()),
]
logger.info(f"Started {len(tasks)} background tasks")
# Scheduled tasks with cron-like syntax
TASK_SCHEDULE = {
"collect_prices": "*/5 * * * *", # Every 5 minutes
"collect_defi": "0 * * * *", # Hourly
"fetch_news": "*/30 * * * *", # Every 30 minutes
"sentiment_analysis": "0 * * * *", # Hourly
"health_check": "*/5 * * * *", # Every 5 minutes
"backup_database": "0 2 * * *", # Daily at 2 AM
"cleanup_logs": "0 3 * * *", # Daily at 3 AM
}
```
#### 5.2 Auto-Discovery Service
**Files:**
- `backend/services/auto_discovery_service.py` - Discovery logic
**Implementation:**
```python
# Enable in environment
ENABLE_AUTO_DISCOVERY=true
AUTO_DISCOVERY_INTERVAL_HOURS=24
class AutoDiscoveryService:
"""Automatically discover new crypto API providers"""
async def discover_providers(self) -> List[Provider]:
"""Scan for new providers"""
discovered = []
sources = [
self.scan_github_repositories,
self.scan_api_directories,
self.scan_rss_feeds,
self.query_existing_apis,
]
for source in sources:
try:
providers = await source()
discovered.extend(providers)
logger.info(f"Discovered {len(providers)} from {source.__name__}")
except Exception as e:
logger.error(f"Discovery error in {source.__name__}: {e}")
# Validate and store
valid = []
for provider in discovered:
if await self.validate_provider(provider):
await self.store_provider(provider)
valid.append(provider)
return valid
async def scan_github_repositories(self):
"""Search GitHub for crypto API projects"""
# Query GitHub API for relevant repos
# Extract API endpoints
# Return as Provider objects
pass
async def validate_provider(self, provider: Provider) -> bool:
"""Test if provider is actually available"""
try:
async with aiohttp.ClientSession() as session:
async with session.get(
provider.base_url,
timeout=aiohttp.ClientTimeout(total=5)
) as resp:
return resp.status < 500
except:
return False
# Start discovery on demand
@app.post("/api/discovery/run")
async def trigger_discovery(background: bool = True):
"""Trigger provider discovery"""
discovery_service = AutoDiscoveryService()
if background:
asyncio.create_task(discovery_service.discover_providers())
return {"status": "Discovery started in background"}
else:
providers = await discovery_service.discover_providers()
return {"discovered": len(providers), "providers": providers}
```
---
## π³ HuggingFace Spaces Deployment
### Configuration for HF Spaces
**`spaces/app.py` (Entry point):**
```python
import os
import sys
# Set environment for HF Spaces
os.environ['HF_SPACE'] = 'true'
os.environ['PORT'] = '7860' # HF Spaces default port
# Import and start the main FastAPI app
from api_server_extended import app
if __name__ == "__main__":
import uvicorn
uvicorn.run(
app,
host="0.0.0.0",
port=7860,
log_level="info"
)
```
**`spaces/requirements.txt`:**
```
fastapi==0.109.0
uvicorn[standard]==0.27.0
aiohttp==3.9.1
pydantic==2.5.3
websockets==12.0
sqlalchemy==2.0.23
torch==2.1.1
transformers==4.35.2
huggingface-hub==0.19.1
slowapi==0.1.9
python-jose==3.3.0
psutil==5.9.6
aiofiles==23.2.1
```
**`spaces/README.md`:**
```markdown
# Crypto-DT-Source on HuggingFace Spaces
Real-time cryptocurrency data aggregation service with 200+ providers.
## Features
- Real-time price data
- AI sentiment analysis
- 50+ REST endpoints
- WebSocket streaming
- Provider health monitoring
- Historical data storage
## API Documentation
- Swagger UI: https://[your-space-url]/docs
- ReDoc: https://[your-space-url]/redoc
## Quick Start
```bash
curl https://[your-space-url]/api/health
curl https://[your-space-url]/api/prices?symbols=BTC,ETH
curl https://[your-space-url]/api/sentiment
```
## WebSocket Connection
```javascript
const ws = new WebSocket('wss://[your-space-url]/ws');
ws.onmessage = (event) => console.log(JSON.parse(event.data));
```
```
---
## β
Activation Checklist
### Phase 1: Data Integration
- [ ] Modify `/api/market` to return real CoinGecko data
- [ ] Modify `/api/prices` to fetch real provider data
- [ ] Modify `/api/trending` to return live trending coins
- [ ] Implement `/api/ohlcv` with Binance data
- [ ] Implement `/api/defi` with DeFi Llama data
- [ ] Remove all hardcoded mock data
- [ ] Test all endpoints with real data
- [ ] Add caching layer (5-30 min TTL based on endpoint)
### Phase 2: Database
- [ ] Run database migrations
- [ ] Create all required tables
- [ ] Implement write pattern for real data storage
- [ ] Implement read pattern for historical queries
- [ ] Add database health check
- [ ] Test data persistence across restarts
- [ ] Implement cleanup tasks for old data
### Phase 3: AI & Sentiment
- [ ] Install transformers and torch
- [ ] Load HuggingFace sentiment model
- [ ] Implement sentiment analysis endpoint
- [ ] Implement crypto-specific sentiment classification
- [ ] Create news sentiment pipeline
- [ ] Store sentiment scores in database
- [ ] Test model inference latency
### Phase 4: Security
- [ ] Generate JWT secret key
- [ ] Implement authentication middleware
- [ ] Create API key management system
- [ ] Implement rate limiting on all endpoints
- [ ] Add tier-based rate limits (free/pro/enterprise)
- [ ] Create `/api/auth/token` endpoint
- [ ] Test authentication on protected endpoints
- [ ] Set up HTTPS certificate for CORS
### Phase 5: Background Tasks
- [ ] Activate all scheduled tasks
- [ ] Set up price collection (every 5 min)
- [ ] Set up DeFi data collection (hourly)
- [ ] Set up news fetching (every 30 min)
- [ ] Set up sentiment analysis (hourly)
- [ ] Set up health checks (every 5 min)
- [ ] Set up database backup (daily)
- [ ] Set up log cleanup (daily)
### Phase 6: HF Spaces Deployment
- [ ] Create `spaces/` directory
- [ ] Create `spaces/app.py` entry point
- [ ] Create `spaces/requirements.txt`
- [ ] Create `spaces/README.md`
- [ ] Configure environment variables
- [ ] Test locally with Docker
- [ ] Push to HF Spaces
- [ ] Verify all endpoints accessible
- [ ] Monitor logs and metrics
- [ ] Set up auto-restart on failure
---
## π§ Environment Variables
```bash
# Core
PORT=7860
ENVIRONMENT=production
LOG_LEVEL=info
# Database
DATABASE_URL=sqlite:///data/crypto_aggregator.db
DATABASE_POOL_SIZE=20
# Security
JWT_SECRET_KEY=your-secret-key-change-in-production
API_KEY_SALT=your-salt-key
# HuggingFace Spaces
HF_SPACE=true
HF_SPACE_URL=https://huggingface.co/spaces/your-username/crypto-dt-source
# Features
ENABLE_AUTO_DISCOVERY=true
ENABLE_SENTIMENT_ANALYSIS=true
ENABLE_BACKGROUND_TASKS=true
# Rate Limiting
FREE_TIER_LIMIT=30/minute
PRO_TIER_LIMIT=300/minute
# Caching
CACHE_TTL_PRICES=300 # 5 minutes
CACHE_TTL_DEFI=3600 # 1 hour
CACHE_TTL_NEWS=1800 # 30 minutes
# Providers (optional API keys)
ETHERSCAN_API_KEY=
BSCSCAN_API_KEY=
COINGECKO_API_KEY=
```
---
## π Expected Performance
After implementation:
| Metric | Target | Current |
|--------|--------|---------|
| Price endpoint response time | < 500ms | N/A |
| Sentiment analysis latency | < 2s | N/A |
| WebSocket update frequency | Real-time | β
Working |
| Database query latency | < 100ms | N/A |
| Provider failover time | < 2s | β
Working |
| Authentication overhead | < 50ms | N/A |
| Concurrent connections supported | 1000+ | β
Tested |
---
## π¨ Troubleshooting
### Models not loading on HF Spaces
```bash
# HF Spaces has limited disk space
# Use distilbert models (smaller) instead of full models
# Or cache models in requirements
pip install --no-cache-dir transformers torch
```
### Database file too large
```bash
# Implement cleanup task
# Keep only 90 days of data
# Archive old data to S3
```
### Rate limiting too aggressive
```bash
# Adjust limits in environment
FREE_TIER_LIMIT=100/minute
PRO_TIER_LIMIT=500/minute
```
### WebSocket disconnections
```bash
# Increase heartbeat frequency
WEBSOCKET_HEARTBEAT_INTERVAL=10 # seconds
WEBSOCKET_HEARTBEAT_TIMEOUT=30 # seconds
```
---
## π Next Steps
1. **Review Phase 1-2**: Data integration and database
2. **Review Phase 3-4**: AI and security implementations
3. **Review Phase 5-6**: Background tasks and HF deployment
4. **Execute implementation** following the checklist
5. **Test thoroughly** before production deployment
6. **Monitor metrics** and adjust configurations
7. **Collect user feedback** and iterate
---
## π― Success Criteria
Project is **production-ready** when:
β
All 50+ endpoints return real data
β
Database stores 90 days of historical data
β
Sentiment analysis runs on real ML models
β
Authentication required on all protected endpoints
β
Rate limiting enforced across all tiers
β
Background tasks running without errors
β
Health check returns all components OK
β
WebSocket clients can stream real-time data
β
Auto-discovery discovers new providers
β
Deployed on HuggingFace Spaces successfully
β
Average response time < 1 second
β
Zero downtime during operation
---
**Document Version:** 2.0
**Last Updated:** 2025-11-15
**Maintained by:** Claude Code AI
**Status:** Ready for Implementation
|