File size: 20,624 Bytes
b190b45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
#!/usr/bin/env python3
"""

Dynamic Model Loader - Intelligent Model Detection & Registration

سیستم هوشمند بارگذاری و تشخیص مدل‌های AI



Features:

- Auto-detect API type (HuggingFace, OpenAI, REST, GraphQL, etc.)

- Intelligent endpoint detection

- Automatic initialization

- Persistent storage in database

- Cross-page availability

"""

import httpx
import json
import re
import logging
from typing import Dict, Any, Optional, List
from datetime import datetime
import sqlite3
from pathlib import Path

logger = logging.getLogger(__name__)


class DynamicModelLoader:
    """

    هوشمند: تشخیص خودکار نوع API و مدل

    """
    
    def __init__(self, db_path: str = "data/dynamic_models.db"):
        self.db_path = db_path
        Path(db_path).parent.mkdir(parents=True, exist_ok=True)
        self.init_database()
        
        # Patterns for API type detection
        self.api_patterns = {
            'huggingface': [
                r'huggingface\.co',
                r'api-inference\.huggingface\.co',
                r'hf\.co',
                r'hf_[a-zA-Z0-9]+',  # HF token pattern
            ],
            'openai': [
                r'openai\.com',
                r'api\.openai\.com',
                r'sk-[a-zA-Z0-9]+',  # OpenAI key pattern
            ],
            'anthropic': [
                r'anthropic\.com',
                r'claude',
                r'sk-ant-',
            ],
            'rest': [
                r'/api/v\d+/',
                r'/rest/',
                r'application/json',
            ],
            'graphql': [
                r'/graphql',
                r'query.*\{',
                r'mutation.*\{',
            ],
            'websocket': [
                r'ws://',
                r'wss://',
            ]
        }
    
    def init_database(self):
        """ایجاد جداول دیتابیس"""
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        
        # جدول مدل‌های dynamic
        cursor.execute('''

            CREATE TABLE IF NOT EXISTS dynamic_models (

                id INTEGER PRIMARY KEY AUTOINCREMENT,

                model_id TEXT UNIQUE NOT NULL,

                model_name TEXT,

                api_type TEXT,

                base_url TEXT,

                api_key TEXT,

                config JSON,

                endpoints JSON,

                is_active BOOLEAN DEFAULT 1,

                auto_detected BOOLEAN DEFAULT 1,

                created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,

                last_used_at TIMESTAMP,

                use_count INTEGER DEFAULT 0

            )

        ''')
        
        # جدول تاریخچه استفاده
        cursor.execute('''

            CREATE TABLE IF NOT EXISTS model_usage_history (

                id INTEGER PRIMARY KEY AUTOINCREMENT,

                model_id TEXT NOT NULL,

                endpoint_used TEXT,

                response_time_ms REAL,

                success BOOLEAN,

                error_message TEXT,

                used_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,

                FOREIGN KEY (model_id) REFERENCES dynamic_models(model_id)

            )

        ''')
        
        conn.commit()
        conn.close()
        logger.info(f"✅ Dynamic Models database initialized: {self.db_path}")
    
    async def detect_api_type(self, config: Dict[str, Any]) -> str:
        """

        تشخیص هوشمند نوع API

        

        Args:

            config: تنظیمات ورودی (url, key, headers, etc.)

        

        Returns:

            نوع API (huggingface, openai, rest, graphql, etc.)

        """
        config_str = json.dumps(config).lower()
        
        # Check each pattern
        scores = {}
        for api_type, patterns in self.api_patterns.items():
            score = 0
            for pattern in patterns:
                if re.search(pattern, config_str, re.IGNORECASE):
                    score += 1
            scores[api_type] = score
        
        # Return type with highest score
        if max(scores.values()) > 0:
            detected_type = max(scores, key=scores.get)
            logger.info(f"🔍 Detected API type: {detected_type} (score: {scores[detected_type]})")
            return detected_type
        
        # Default to REST
        logger.info("🔍 No specific type detected, defaulting to REST")
        return 'rest'
    
    async def auto_discover_endpoints(self, base_url: str, api_key: Optional[str] = None) -> Dict[str, Any]:
        """

        کشف خودکار endpoints

        

        Args:

            base_url: URL پایه

            api_key: کلید API (اختیاری)

        

        Returns:

            لیست endpoints کشف شده

        """
        discovered = {
            'endpoints': [],
            'methods': [],
            'schemas': {}
        }
        
        # Common endpoint patterns to try
        common_paths = [
            '',
            '/docs',
            '/openapi.json',
            '/swagger.json',
            '/api-docs',
            '/health',
            '/status',
            '/models',
            '/v1/models',
            '/api/v1',
        ]
        
        headers = {}
        if api_key:
            # Try different auth patterns
            headers['Authorization'] = f'Bearer {api_key}'
        
        async with httpx.AsyncClient(timeout=10.0) as client:
            for path in common_paths:
                try:
                    url = f"{base_url.rstrip('/')}{path}"
                    response = await client.get(url, headers=headers)
                    
                    if response.status_code == 200:
                        discovered['endpoints'].append({
                            'path': path,
                            'url': url,
                            'status': 200,
                            'content_type': response.headers.get('content-type', '')
                        })
                        
                        # If it's JSON, try to parse schema
                        if 'json' in response.headers.get('content-type', ''):
                            try:
                                data = response.json()
                                discovered['schemas'][path] = data
                            except:
                                pass
                
                except Exception as e:
                    logger.debug(f"Failed to discover {path}: {e}")
                    continue
        
        logger.info(f"🔍 Discovered {len(discovered['endpoints'])} endpoints")
        return discovered
    
    async def test_model_connection(self, config: Dict[str, Any]) -> Dict[str, Any]:
        """

        تست اتصال به مدل

        

        Args:

            config: تنظیمات مدل

        

        Returns:

            نتیجه تست

        """
        api_type = config.get('api_type', 'rest')
        base_url = config.get('base_url', '')
        api_key = config.get('api_key')
        
        result = {
            'success': False,
            'api_type': api_type,
            'response_time_ms': 0,
            'error': None,
            'detected_capabilities': []
        }
        
        start_time = datetime.now()
        
        try:
            # Test based on API type
            if api_type == 'huggingface':
                result = await self._test_huggingface(base_url, api_key)
            elif api_type == 'openai':
                result = await self._test_openai(base_url, api_key)
            elif api_type == 'rest':
                result = await self._test_rest(base_url, api_key)
            elif api_type == 'graphql':
                result = await self._test_graphql(base_url, api_key)
            else:
                result = await self._test_generic(base_url, api_key)
            
            end_time = datetime.now()
            result['response_time_ms'] = (end_time - start_time).total_seconds() * 1000
            
        except Exception as e:
            result['error'] = str(e)
            logger.error(f"❌ Test failed: {e}")
        
        return result
    
    async def _test_huggingface(self, url: str, api_key: Optional[str]) -> Dict[str, Any]:
        """تست مدل HuggingFace"""
        headers = {'Content-Type': 'application/json'}
        if api_key:
            headers['Authorization'] = f'Bearer {api_key}'
        
        # Test with simple input
        test_payload = {'inputs': 'Test'}
        
        async with httpx.AsyncClient(timeout=30.0) as client:
            response = await client.post(url, headers=headers, json=test_payload)
            
            return {
                'success': response.status_code in [200, 503],  # 503 = model loading
                'status_code': response.status_code,
                'detected_capabilities': ['text-classification', 'sentiment-analysis']
                if response.status_code == 200 else ['loading']
            }
    
    async def _test_openai(self, url: str, api_key: Optional[str]) -> Dict[str, Any]:
        """تست API سازگار با OpenAI"""
        headers = {'Content-Type': 'application/json'}
        if api_key:
            headers['Authorization'] = f'Bearer {api_key}'
        
        # Test with simple completion
        test_payload = {
            'model': 'gpt-3.5-turbo',
            'messages': [{'role': 'user', 'content': 'Test'}],
            'max_tokens': 5
        }
        
        async with httpx.AsyncClient(timeout=30.0) as client:
            response = await client.post(
                f"{url.rstrip('/')}/v1/chat/completions",
                headers=headers,
                json=test_payload
            )
            
            return {
                'success': response.status_code == 200,
                'status_code': response.status_code,
                'detected_capabilities': ['chat', 'completion', 'embeddings']
            }
    
    async def _test_rest(self, url: str, api_key: Optional[str]) -> Dict[str, Any]:
        """تست REST API عمومی"""
        headers = {}
        if api_key:
            headers['Authorization'] = f'Bearer {api_key}'
        
        async with httpx.AsyncClient(timeout=10.0) as client:
            response = await client.get(url, headers=headers)
            
            return {
                'success': response.status_code == 200,
                'status_code': response.status_code,
                'detected_capabilities': ['rest-api']
            }
    
    async def _test_graphql(self, url: str, api_key: Optional[str]) -> Dict[str, Any]:
        """تست GraphQL API"""
        headers = {'Content-Type': 'application/json'}
        if api_key:
            headers['Authorization'] = f'Bearer {api_key}'
        
        # Introspection query
        query = {'query': '{ __schema { types { name } } }'}
        
        async with httpx.AsyncClient(timeout=10.0) as client:
            response = await client.post(url, headers=headers, json=query)
            
            return {
                'success': response.status_code == 200,
                'status_code': response.status_code,
                'detected_capabilities': ['graphql']
            }
    
    async def _test_generic(self, url: str, api_key: Optional[str]) -> Dict[str, Any]:
        """تست عمومی"""
        async with httpx.AsyncClient(timeout=10.0) as client:
            response = await client.get(url)
            
            return {
                'success': response.status_code == 200,
                'status_code': response.status_code,
                'detected_capabilities': ['unknown']
            }
    
    async def register_model(self, config: Dict[str, Any]) -> Dict[str, Any]:
        """

        ثبت مدل جدید

        

        Args:

            config: {

                'model_id': 'unique-id',

                'model_name': 'My Model',

                'base_url': 'https://...',

                'api_key': 'xxx',

                'api_type': 'huggingface' (optional, auto-detected),

                'endpoints': {...} (optional, auto-discovered),

                'custom_config': {...} (optional)

            }

        

        Returns:

            نتیجه ثبت

        """
        # Auto-detect API type if not provided
        if 'api_type' not in config:
            config['api_type'] = await self.detect_api_type(config)
        
        # Auto-discover endpoints if not provided
        if 'endpoints' not in config:
            discovered = await self.auto_discover_endpoints(
                config.get('base_url', ''),
                config.get('api_key')
            )
            config['endpoints'] = discovered
        
        # Test connection
        test_result = await self.test_model_connection(config)
        
        if not test_result['success']:
            return {
                'success': False,
                'error': f"Connection test failed: {test_result.get('error', 'Unknown error')}",
                'test_result': test_result
            }
        
        # Save to database
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        
        try:
            cursor.execute('''

                INSERT OR REPLACE INTO dynamic_models

                (model_id, model_name, api_type, base_url, api_key, config, endpoints, auto_detected)

                VALUES (?, ?, ?, ?, ?, ?, ?, ?)

            ''', (
                config.get('model_id'),
                config.get('model_name'),
                config.get('api_type'),
                config.get('base_url'),
                config.get('api_key'),
                json.dumps(config.get('custom_config', {})),
                json.dumps(config.get('endpoints', {})),
                True
            ))
            
            conn.commit()
            
            logger.info(f"✅ Model registered: {config.get('model_id')}")
            
            return {
                'success': True,
                'model_id': config.get('model_id'),
                'api_type': config.get('api_type'),
                'test_result': test_result,
                'message': 'Model registered successfully'
            }
        
        except Exception as e:
            logger.error(f"❌ Failed to register model: {e}")
            return {
                'success': False,
                'error': str(e)
            }
        
        finally:
            conn.close()
    
    def get_all_models(self) -> List[Dict[str, Any]]:
        """دریافت همه مدل‌های ثبت شده"""
        conn = sqlite3.connect(self.db_path)
        conn.row_factory = sqlite3.Row
        cursor = conn.cursor()
        
        cursor.execute('''

            SELECT * FROM dynamic_models

            WHERE is_active = 1

            ORDER BY use_count DESC, created_at DESC

        ''')
        
        models = [dict(row) for row in cursor.fetchall()]
        conn.close()
        
        # Parse JSON fields
        for model in models:
            model['config'] = json.loads(model.get('config', '{}'))
            model['endpoints'] = json.loads(model.get('endpoints', '{}'))
        
        return models
    
    def get_model(self, model_id: str) -> Optional[Dict[str, Any]]:
        """دریافت یک مدل خاص"""
        conn = sqlite3.connect(self.db_path)
        conn.row_factory = sqlite3.Row
        cursor = conn.cursor()
        
        cursor.execute('''

            SELECT * FROM dynamic_models

            WHERE model_id = ? AND is_active = 1

        ''', (model_id,))
        
        row = cursor.fetchone()
        conn.close()
        
        if row:
            model = dict(row)
            model['config'] = json.loads(model.get('config', '{}'))
            model['endpoints'] = json.loads(model.get('endpoints', '{}'))
            return model
        
        return None
    
    async def use_model(self, model_id: str, endpoint: str, payload: Dict[str, Any]) -> Dict[str, Any]:
        """

        استفاده از یک مدل ثبت شده

        

        Args:

            model_id: شناسه مدل

            endpoint: endpoint مورد نظر

            payload: داده‌های ورودی

        

        Returns:

            خروجی مدل

        """
        model = self.get_model(model_id)
        
        if not model:
            return {
                'success': False,
                'error': f'Model not found: {model_id}'
            }
        
        # Update usage count
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        cursor.execute('''

            UPDATE dynamic_models

            SET use_count = use_count + 1, last_used_at = CURRENT_TIMESTAMP

            WHERE model_id = ?

        ''', (model_id,))
        conn.commit()
        conn.close()
        
        # Prepare request
        api_type = model['api_type']
        base_url = model['base_url']
        api_key = model['api_key']
        
        headers = {'Content-Type': 'application/json'}
        if api_key:
            if api_type == 'huggingface':
                headers['Authorization'] = f'Bearer {api_key}'
            elif api_type == 'openai':
                headers['Authorization'] = f'Bearer {api_key}'
            else:
                headers['Authorization'] = api_key
        
        url = f"{base_url.rstrip('/')}/{endpoint.lstrip('/')}"
        
        start_time = datetime.now()
        
        try:
            async with httpx.AsyncClient(timeout=30.0) as client:
                response = await client.post(url, headers=headers, json=payload)
                
                end_time = datetime.now()
                response_time = (end_time - start_time).total_seconds() * 1000
                
                # Log usage
                conn = sqlite3.connect(self.db_path)
                cursor = conn.cursor()
                cursor.execute('''

                    INSERT INTO model_usage_history

                    (model_id, endpoint_used, response_time_ms, success)

                    VALUES (?, ?, ?, ?)

                ''', (model_id, endpoint, response_time, response.status_code == 200))
                conn.commit()
                conn.close()
                
                if response.status_code == 200:
                    return {
                        'success': True,
                        'data': response.json(),
                        'response_time_ms': response_time
                    }
                else:
                    return {
                        'success': False,
                        'error': f'HTTP {response.status_code}: {response.text[:200]}'
                    }
        
        except Exception as e:
            logger.error(f"❌ Model usage failed: {e}")
            
            # Log error
            conn = sqlite3.connect(self.db_path)
            cursor = conn.cursor()
            cursor.execute('''

                INSERT INTO model_usage_history

                (model_id, endpoint_used, success, error_message)

                VALUES (?, ?, ?, ?)

            ''', (model_id, endpoint, False, str(e)))
            conn.commit()
            conn.close()
            
            return {
                'success': False,
                'error': str(e)
            }
    
    def delete_model(self, model_id: str) -> bool:
        """حذف یک مدل"""
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        
        cursor.execute('''

            UPDATE dynamic_models

            SET is_active = 0

            WHERE model_id = ?

        ''', (model_id,))
        
        conn.commit()
        affected = cursor.rowcount
        conn.close()
        
        return affected > 0


# Global instance
dynamic_loader = DynamicModelLoader()

__all__ = ['DynamicModelLoader', 'dynamic_loader']