File size: 12,931 Bytes
b190b45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
"""

HuggingFace Sentiment Provider - AI-powered text analysis



Provides:

- Sentiment analysis using transformer models

- Text summarization

- Named entity recognition

- Zero-shot classification



Uses HuggingFace Inference API for model inference.

API Documentation: https://huggingface.co/docs/api-inference/

"""

from __future__ import annotations
import os
from typing import Any, Dict, List, Optional

from .base import BaseProvider, create_success_response, create_error_response


class HFSentimentProvider(BaseProvider):
    """HuggingFace Inference API provider for AI-powered analysis"""
    
    # API Key from environment variable
    API_KEY = os.getenv("HF_API_TOKEN") or os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_TOKEN") or ""
    
    # Default models for each task (using stable, available models)
    MODELS = {
        "sentiment": "distilbert-base-uncased-finetuned-sst-2-english",
        "sentiment_financial": "mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis",
        "summarization": "sshleifer/distilbart-cnn-12-6",
        "ner": "dslim/bert-base-NER",
        "classification": "facebook/bart-large-mnli",
        "text_generation": "gpt2"
    }
    
    def __init__(self, api_key: Optional[str] = None):
        super().__init__(
            name="huggingface",
            base_url="https://router.huggingface.co/hf-inference/models",
            api_key=api_key or self.API_KEY,
            timeout=15.0,  # HF inference can be slower
            cache_ttl=60.0  # Cache AI results for 60 seconds
        )
    
    def _get_default_headers(self) -> Dict[str, str]:
        """Get headers with HuggingFace authorization"""
        return {
            "Accept": "application/json",
            "Content-Type": "application/json",
            "Authorization": f"Bearer {self.api_key}"
        }
    
    async def analyze_sentiment(

        self,

        text: str,

        model: Optional[str] = None,

        use_financial_model: bool = False

    ) -> Dict[str, Any]:
        """

        Analyze sentiment of text using HuggingFace models.

        

        Args:

            text: Text to analyze

            model: Custom model to use (optional)

            use_financial_model: Use FinBERT for financial text

        

        Returns:

            Standardized response with sentiment analysis

        """
        if not text or len(text.strip()) < 3:
            return create_error_response(
                self.name,
                "Invalid text",
                "Text must be at least 3 characters"
            )
        
        # Truncate text if too long (HF has limits)
        text = text[:1000]
        
        # Select model
        if model:
            model_id = model
        elif use_financial_model:
            model_id = self.MODELS["sentiment_financial"]
        else:
            model_id = self.MODELS["sentiment"]
        
        # Build endpoint
        endpoint = f"{model_id}"
        
        response = await self.post(endpoint, json_data={"inputs": text})
        
        if not response.get("success"):
            return response
        
        data = response.get("data", [])
        
        # Handle model loading state
        if isinstance(data, dict) and data.get("error"):
            error_msg = data.get("error", "Model error")
            if "loading" in error_msg.lower():
                return create_error_response(
                    self.name,
                    "Model is loading",
                    "Please retry in a few seconds"
                )
            return create_error_response(self.name, error_msg)
        
        # Parse sentiment results
        results = self._parse_sentiment_results(data, model_id)
        
        return create_success_response(
            self.name,
            {
                "text": text[:100] + "..." if len(text) > 100 else text,
                "model": model_id,
                "sentiment": results
            }
        )
    
    def _parse_sentiment_results(self, data: Any, model_id: str) -> Dict[str, Any]:
        """Parse sentiment results from different model formats"""
        if not data:
            return {"label": "unknown", "score": 0.0}
        
        # Handle nested list format [[{label, score}, ...]]
        if isinstance(data, list) and len(data) > 0:
            if isinstance(data[0], list):
                data = data[0]
            
            # Find highest scoring label
            best = max(data, key=lambda x: x.get("score", 0))
            
            # Normalize label
            label = best.get("label", "unknown").lower()
            score = best.get("score", 0.0)
            
            # Map common labels
            label_map = {
                "label_0": "negative",
                "label_1": "neutral", 
                "label_2": "positive",
                "negative": "negative",
                "neutral": "neutral",
                "positive": "positive",
                "pos": "positive",
                "neg": "negative",
                "neu": "neutral"
            }
            
            normalized_label = label_map.get(label, label)
            
            return {
                "label": normalized_label,
                "score": round(score, 4),
                "allScores": [
                    {"label": item.get("label"), "score": round(item.get("score", 0), 4)}
                    for item in data
                ]
            }
        
        return {"label": "unknown", "score": 0.0}
    
    async def summarize_text(

        self,

        text: str,

        max_length: int = 150,

        min_length: int = 30,

        model: Optional[str] = None

    ) -> Dict[str, Any]:
        """

        Summarize text using HuggingFace summarization model.

        

        Args:

            text: Text to summarize

            max_length: Maximum summary length

            min_length: Minimum summary length

            model: Custom model to use

        """
        if not text or len(text.strip()) < 50:
            return create_error_response(
                self.name,
                "Text too short",
                "Text must be at least 50 characters for summarization"
            )
        
        # Truncate very long text
        text = text[:3000]
        
        model_id = model or self.MODELS["summarization"]
        
        payload = {
            "inputs": text,
            "parameters": {
                "max_length": max_length,
                "min_length": min_length,
                "do_sample": False
            }
        }
        
        response = await self.post(model_id, json_data=payload)
        
        if not response.get("success"):
            return response
        
        data = response.get("data", [])
        
        # Handle model loading
        if isinstance(data, dict) and data.get("error"):
            error_msg = data.get("error", "Model error")
            if "loading" in error_msg.lower():
                return create_error_response(
                    self.name,
                    "Model is loading",
                    "Please retry in a few seconds"
                )
            return create_error_response(self.name, error_msg)
        
        # Parse summary
        summary = ""
        if isinstance(data, list) and len(data) > 0:
            summary = data[0].get("summary_text", "")
        elif isinstance(data, dict):
            summary = data.get("summary_text", "")
        
        return create_success_response(
            self.name,
            {
                "originalLength": len(text),
                "summaryLength": len(summary),
                "model": model_id,
                "summary": summary
            }
        )
    
    async def extract_entities(

        self,

        text: str,

        model: Optional[str] = None

    ) -> Dict[str, Any]:
        """

        Extract named entities from text.

        

        Args:

            text: Text to analyze

            model: Custom NER model to use

        """
        if not text or len(text.strip()) < 3:
            return create_error_response(
                self.name,
                "Invalid text",
                "Text must be at least 3 characters"
            )
        
        text = text[:1000]
        model_id = model or self.MODELS["ner"]
        
        response = await self.post(model_id, json_data={"inputs": text})
        
        if not response.get("success"):
            return response
        
        data = response.get("data", [])
        
        if isinstance(data, dict) and data.get("error"):
            error_msg = data.get("error", "Model error")
            if "loading" in error_msg.lower():
                return create_error_response(
                    self.name,
                    "Model is loading",
                    "Please retry in a few seconds"
                )
            return create_error_response(self.name, error_msg)
        
        # Parse entities
        entities = []
        if isinstance(data, list):
            for entity in data:
                entities.append({
                    "word": entity.get("word"),
                    "entity": entity.get("entity_group") or entity.get("entity"),
                    "score": round(entity.get("score", 0), 4),
                    "start": entity.get("start"),
                    "end": entity.get("end")
                })
        
        return create_success_response(
            self.name,
            {
                "text": text[:100] + "..." if len(text) > 100 else text,
                "model": model_id,
                "entities": entities,
                "count": len(entities)
            }
        )
    
    async def classify_text(

        self,

        text: str,

        candidate_labels: List[str],

        model: Optional[str] = None

    ) -> Dict[str, Any]:
        """

        Zero-shot text classification.

        

        Args:

            text: Text to classify

            candidate_labels: List of possible labels

            model: Custom classification model

        """
        if not text or len(text.strip()) < 3:
            return create_error_response(
                self.name,
                "Invalid text",
                "Text must be at least 3 characters"
            )
        
        if not candidate_labels or len(candidate_labels) < 2:
            return create_error_response(
                self.name,
                "Invalid labels",
                "At least 2 candidate labels required"
            )
        
        text = text[:500]
        model_id = model or self.MODELS["classification"]
        
        payload = {
            "inputs": text,
            "parameters": {
                "candidate_labels": candidate_labels[:10]  # Limit labels
            }
        }
        
        response = await self.post(model_id, json_data=payload)
        
        if not response.get("success"):
            return response
        
        data = response.get("data", {})
        
        if isinstance(data, dict) and data.get("error"):
            error_msg = data.get("error", "Model error")
            if "loading" in error_msg.lower():
                return create_error_response(
                    self.name,
                    "Model is loading",
                    "Please retry in a few seconds"
                )
            return create_error_response(self.name, error_msg)
        
        # Parse classification results
        labels = data.get("labels", [])
        scores = data.get("scores", [])
        
        classifications = []
        for label, score in zip(labels, scores):
            classifications.append({
                "label": label,
                "score": round(score, 4)
            })
        
        return create_success_response(
            self.name,
            {
                "text": text[:100] + "..." if len(text) > 100 else text,
                "model": model_id,
                "classifications": classifications,
                "bestLabel": labels[0] if labels else None,
                "bestScore": round(scores[0], 4) if scores else 0.0
            }
        )
    
    async def get_available_models(self) -> Dict[str, Any]:
        """Get list of available models for each task"""
        return create_success_response(
            self.name,
            {
                "models": self.MODELS,
                "tasks": list(self.MODELS.keys())
            }
        )