File size: 14,041 Bytes
b66240d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
#!/usr/bin/env python3
"""Centralized access to Hugging Face models with ensemble sentiment."""
from __future__ import annotations
import logging
import threading
from dataclasses import dataclass
from typing import Any, Dict, List, Mapping, Optional, Sequence
from config import HUGGINGFACE_MODELS, get_settings
# Set environment variables to avoid TensorFlow/Keras issues
# We'll force PyTorch framework instead
import os
import sys
# Completely disable TensorFlow to force PyTorch
os.environ.setdefault('TRANSFORMERS_NO_ADVISORY_WARNINGS', '1')
os.environ.setdefault('TRANSFORMERS_VERBOSITY', 'error')
os.environ.setdefault('TF_CPP_MIN_LOG_LEVEL', '3')
os.environ.setdefault('TRANSFORMERS_FRAMEWORK', 'pt')
# Mock tf_keras to prevent transformers from trying to import it
# This prevents the broken tf-keras installation from causing errors
class TfKerasMock:
"""Mock tf_keras to prevent import errors when transformers checks for TensorFlow"""
pass
# Add mock to sys.modules before transformers imports
sys.modules['tf_keras'] = TfKerasMock()
sys.modules['tf_keras.src'] = TfKerasMock()
sys.modules['tf_keras.src.utils'] = TfKerasMock()
try:
from transformers import pipeline
TRANSFORMERS_AVAILABLE = True
except ImportError:
TRANSFORMERS_AVAILABLE = False
logger = logging.getLogger(__name__)
settings = get_settings()
HF_MODE = os.getenv("HF_MODE", "off").lower()
HF_TOKEN_ENV = os.getenv("HF_TOKEN")
if HF_MODE not in ("off", "public", "auth"):
HF_MODE = "off"
logger.warning(f"Invalid HF_MODE, defaulting to 'off'")
if HF_MODE == "auth" and not HF_TOKEN_ENV:
HF_MODE = "off"
logger.warning("HF_MODE='auth' but HF_TOKEN not set, defaulting to 'off'")
ACTIVE_MODELS = [
"ElKulako/cryptobert",
"kk08/CryptoBERT",
"ProsusAI/finbert"
]
LEGACY_MODELS = [
"burakutf/finetuned-finbert-crypto",
"mathugo/crypto_news_bert",
"svalabs/twitter-xlm-roberta-bitcoin-sentiment",
"mayurjadhav/crypto-sentiment-model",
"cardiffnlp/twitter-roberta-base-sentiment",
"mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis",
"agarkovv/CryptoTrader-LM"
]
CRYPTO_SENTIMENT_MODELS = ACTIVE_MODELS[:2] + LEGACY_MODELS[:2]
SOCIAL_SENTIMENT_MODELS = LEGACY_MODELS[2:4]
FINANCIAL_SENTIMENT_MODELS = [ACTIVE_MODELS[2]] + [LEGACY_MODELS[4]]
NEWS_SENTIMENT_MODELS = [LEGACY_MODELS[5]]
DECISION_MODELS = [LEGACY_MODELS[6]]
@dataclass(frozen=True)
class PipelineSpec:
key: str
task: str
model_id: str
requires_auth: bool = False
category: str = "sentiment"
MODEL_SPECS: Dict[str, PipelineSpec] = {}
# Legacy models
for lk in ["sentiment_twitter", "sentiment_financial", "summarization", "crypto_sentiment"]:
if lk in HUGGINGFACE_MODELS:
MODEL_SPECS[lk] = PipelineSpec(
key=lk,
task="sentiment-analysis" if "sentiment" in lk else "summarization",
model_id=HUGGINGFACE_MODELS[lk],
category="legacy"
)
for i, mid in enumerate(ACTIVE_MODELS):
MODEL_SPECS[f"active_{i}"] = PipelineSpec(
key=f"active_{i}", task="sentiment-analysis", model_id=mid,
category="crypto_sentiment" if i < 2 else "financial_sentiment",
requires_auth=("ElKulako" in mid)
)
for i, mid in enumerate(CRYPTO_SENTIMENT_MODELS):
MODEL_SPECS[f"crypto_sent_{i}"] = PipelineSpec(
key=f"crypto_sent_{i}", task="sentiment-analysis", model_id=mid,
category="crypto_sentiment", requires_auth=("ElKulako" in mid)
)
for i, mid in enumerate(SOCIAL_SENTIMENT_MODELS):
MODEL_SPECS[f"social_sent_{i}"] = PipelineSpec(
key=f"social_sent_{i}", task="sentiment-analysis", model_id=mid, category="social_sentiment"
)
for i, mid in enumerate(FINANCIAL_SENTIMENT_MODELS):
MODEL_SPECS[f"financial_sent_{i}"] = PipelineSpec(
key=f"financial_sent_{i}", task="sentiment-analysis", model_id=mid, category="financial_sentiment"
)
for i, mid in enumerate(NEWS_SENTIMENT_MODELS):
MODEL_SPECS[f"news_sent_{i}"] = PipelineSpec(
key=f"news_sent_{i}", task="sentiment-analysis", model_id=mid, category="news_sentiment"
)
class ModelNotAvailable(RuntimeError): pass
class ModelRegistry:
def __init__(self):
self._pipelines = {}
self._lock = threading.Lock()
self._initialized = False
def get_pipeline(self, key: str):
if not TRANSFORMERS_AVAILABLE:
raise ModelNotAvailable("transformers not installed")
if key not in MODEL_SPECS:
raise ModelNotAvailable(f"Unknown key: {key}")
spec = MODEL_SPECS[key]
if key in self._pipelines:
return self._pipelines[key]
with self._lock:
if key in self._pipelines:
return self._pipelines[key]
if HF_MODE == "off":
raise ModelNotAvailable("HF_MODE=off")
token_value = None
if HF_MODE == "auth":
token_value = HF_TOKEN_ENV or settings.hf_token
elif HF_MODE == "public":
token_value = None
if spec.requires_auth and not token_value:
raise ModelNotAvailable("Model requires auth but no token available")
logger.info(f"Loading model: {spec.model_id} (mode: {HF_MODE})")
try:
pipeline_kwargs = {
'task': spec.task,
'model': spec.model_id,
'tokenizer': spec.model_id,
'framework': 'pt',
'device': -1,
}
pipeline_kwargs['token'] = token_value
self._pipelines[key] = pipeline(**pipeline_kwargs)
except Exception as e:
error_msg = str(e)
error_lower = error_msg.lower()
try:
from huggingface_hub.errors import RepositoryNotFoundError, HfHubHTTPError
hf_errors = (RepositoryNotFoundError, HfHubHTTPError)
except ImportError:
hf_errors = ()
is_auth_error = any(kw in error_lower for kw in ['401', 'unauthorized', 'repository not found', 'expired', 'token'])
is_hf_error = isinstance(e, hf_errors) or is_auth_error
if is_hf_error:
logger.warning(f"HF error for {spec.model_id}: {type(e).__name__}")
raise ModelNotAvailable(f"HF error: {spec.model_id}") from e
if any(kw in error_lower for kw in ['keras', 'tensorflow', 'tf_keras', 'framework']):
try:
pipeline_kwargs['torch_dtype'] = 'float32'
self._pipelines[key] = pipeline(**pipeline_kwargs)
return self._pipelines[key]
except Exception:
raise ModelNotAvailable(f"Framework error: {spec.model_id}") from e
raise ModelNotAvailable(f"Load failed: {spec.model_id}") from e
return self._pipelines[key]
def get_loaded_models(self):
"""Get list of all loaded model keys"""
return list(self._pipelines.keys())
def get_available_sentiment_models(self):
"""Get list of all available sentiment model keys"""
return [key for key in MODEL_SPECS.keys() if "sent" in key or "sentiment" in key]
def initialize_models(self):
if self._initialized:
return {"status": "already_initialized", "mode": HF_MODE, "models_loaded": len(self._pipelines)}
if HF_MODE == "off":
self._initialized = True
return {"status": "disabled", "mode": "off", "models_loaded": 0, "loaded": [], "failed": []}
if not TRANSFORMERS_AVAILABLE:
return {"status": "transformers_not_available", "mode": HF_MODE, "models_loaded": 0}
loaded, failed = [], []
active_keys = [f"active_{i}" for i in range(len(ACTIVE_MODELS))]
for key in active_keys:
try:
self.get_pipeline(key)
loaded.append(key)
except ModelNotAvailable as e:
failed.append((key, str(e)[:100]))
except Exception as e:
error_msg = str(e)[:100]
failed.append((key, error_msg))
self._initialized = True
status = "initialized" if loaded else "partial"
return {"status": status, "mode": HF_MODE, "models_loaded": len(loaded), "loaded": loaded, "failed": failed}
_registry = ModelRegistry()
AI_MODELS_SUMMARY = {"status": "not_initialized", "mode": "off", "models_loaded": 0, "loaded": [], "failed": []}
def initialize_models():
global AI_MODELS_SUMMARY
result = _registry.initialize_models()
AI_MODELS_SUMMARY = result
return result
def ensemble_crypto_sentiment(text: str) -> Dict[str, Any]:
if not TRANSFORMERS_AVAILABLE or HF_MODE == "off":
return {"label": "neutral", "confidence": 0.0, "scores": {}, "model_count": 0, "error": "HF disabled" if HF_MODE == "off" else "transformers N/A"}
results, labels_count, total_conf = {}, {"bullish": 0, "bearish": 0, "neutral": 0}, 0.0
loaded_keys = _registry.get_loaded_models()
available_keys = [key for key in loaded_keys if "sent" in key or "sentiment" in key or key.startswith("active_")]
if not available_keys:
return {"label": "neutral", "confidence": 0.0, "scores": {}, "model_count": 0, "error": "No models loaded"}
for key in available_keys:
try:
pipe = _registry.get_pipeline(key)
res = pipe(text[:512])
if isinstance(res, list) and res: res = res[0]
label = res.get("label", "NEUTRAL").upper()
score = res.get("score", 0.5)
mapped = "bullish" if "POSITIVE" in label or "BULLISH" in label else ("bearish" if "NEGATIVE" in label or "BEARISH" in label else "neutral")
spec = MODEL_SPECS.get(key)
if spec:
results[spec.model_id] = {"label": mapped, "score": score}
else:
results[key] = {"label": mapped, "score": score}
labels_count[mapped] += 1
total_conf += score
except ModelNotAvailable:
continue
except Exception as e:
logger.warning(f"Ensemble failed for {key}: {e}")
if not results:
return {"label": "neutral", "confidence": 0.0, "scores": {}, "model_count": 0, "error": "All models failed"}
final = max(labels_count, key=labels_count.get)
avg_conf = total_conf / len(results)
return {"label": final, "confidence": avg_conf, "scores": results, "model_count": len(results)}
def analyze_crypto_sentiment(text: str): return ensemble_crypto_sentiment(text)
def analyze_financial_sentiment(text: str):
if not TRANSFORMERS_AVAILABLE:
return {"label": "neutral", "score": 0.5, "error": "transformers N/A"}
try:
pipe = _registry.get_pipeline("financial_sent_0")
res = pipe(text[:512])
if isinstance(res, list) and res: res = res[0]
return {"label": res.get("label", "neutral").lower(), "score": res.get("score", 0.5)}
except Exception as e:
logger.error(f"Financial sentiment failed: {e}")
return {"label": "neutral", "score": 0.5, "error": str(e)}
def analyze_social_sentiment(text: str):
if not TRANSFORMERS_AVAILABLE:
return {"label": "neutral", "score": 0.5, "error": "transformers N/A"}
try:
pipe = _registry.get_pipeline("social_sent_0")
res = pipe(text[:512])
if isinstance(res, list) and res: res = res[0]
return {"label": res.get("label", "neutral").lower(), "score": res.get("score", 0.5)}
except Exception as e:
logger.error(f"Social sentiment failed: {e}")
return {"label": "neutral", "score": 0.5, "error": str(e)}
def analyze_market_text(text: str): return ensemble_crypto_sentiment(text)
def analyze_chart_points(data: Sequence[Mapping[str, Any]], indicators: Optional[List[str]] = None):
if not data: return {"trend": "neutral", "strength": 0, "analysis": "No data"}
prices = [float(p.get("price", 0)) for p in data if p.get("price")]
if not prices: return {"trend": "neutral", "strength": 0, "analysis": "No price data"}
first, last = prices[0], prices[-1]
change = ((last - first) / first * 100) if first > 0 else 0
if change > 5: trend, strength = "bullish", min(abs(change) / 10, 1.0)
elif change < -5: trend, strength = "bearish", min(abs(change) / 10, 1.0)
else: trend, strength = "neutral", abs(change) / 5
return {"trend": trend, "strength": strength, "change_pct": change, "support": min(prices), "resistance": max(prices), "analysis": f"Price moved {change:.2f}% showing {trend} trend"}
def analyze_news_item(item: Dict[str, Any]):
text = item.get("title", "") + " " + item.get("description", "")
sent = ensemble_crypto_sentiment(text)
return {**item, "sentiment": sent["label"], "sentiment_confidence": sent["confidence"], "sentiment_details": sent}
def get_model_info():
return {
"transformers_available": TRANSFORMERS_AVAILABLE,
"hf_mode": HF_MODE,
"hf_token_configured": bool(HF_TOKEN_ENV or settings.hf_token) if HF_MODE == "auth" else False,
"models_initialized": _registry._initialized,
"models_loaded": len(_registry._pipelines),
"active_models": ACTIVE_MODELS,
"total_models": len(MODEL_SPECS)
}
def registry_status():
return {
"initialized": _registry._initialized,
"pipelines_loaded": len(_registry._pipelines),
"available_models": list(MODEL_SPECS.keys()),
"transformers_available": TRANSFORMERS_AVAILABLE
}
|