File size: 14,041 Bytes
b66240d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
#!/usr/bin/env python3
"""Centralized access to Hugging Face models with ensemble sentiment."""

from __future__ import annotations
import logging
import threading
from dataclasses import dataclass
from typing import Any, Dict, List, Mapping, Optional, Sequence
from config import HUGGINGFACE_MODELS, get_settings

# Set environment variables to avoid TensorFlow/Keras issues
# We'll force PyTorch framework instead
import os
import sys

# Completely disable TensorFlow to force PyTorch
os.environ.setdefault('TRANSFORMERS_NO_ADVISORY_WARNINGS', '1')
os.environ.setdefault('TRANSFORMERS_VERBOSITY', 'error')
os.environ.setdefault('TF_CPP_MIN_LOG_LEVEL', '3')
os.environ.setdefault('TRANSFORMERS_FRAMEWORK', 'pt')

# Mock tf_keras to prevent transformers from trying to import it
# This prevents the broken tf-keras installation from causing errors
class TfKerasMock:
    """Mock tf_keras to prevent import errors when transformers checks for TensorFlow"""
    pass

# Add mock to sys.modules before transformers imports
sys.modules['tf_keras'] = TfKerasMock()
sys.modules['tf_keras.src'] = TfKerasMock()
sys.modules['tf_keras.src.utils'] = TfKerasMock()

try:
    from transformers import pipeline
    TRANSFORMERS_AVAILABLE = True
except ImportError:
    TRANSFORMERS_AVAILABLE = False

logger = logging.getLogger(__name__)
settings = get_settings()

HF_MODE = os.getenv("HF_MODE", "off").lower()
HF_TOKEN_ENV = os.getenv("HF_TOKEN")

if HF_MODE not in ("off", "public", "auth"):
    HF_MODE = "off"
    logger.warning(f"Invalid HF_MODE, defaulting to 'off'")

if HF_MODE == "auth" and not HF_TOKEN_ENV:
    HF_MODE = "off"
    logger.warning("HF_MODE='auth' but HF_TOKEN not set, defaulting to 'off'")

ACTIVE_MODELS = [
    "ElKulako/cryptobert",
    "kk08/CryptoBERT",
    "ProsusAI/finbert"
]

LEGACY_MODELS = [
    "burakutf/finetuned-finbert-crypto",
    "mathugo/crypto_news_bert",
    "svalabs/twitter-xlm-roberta-bitcoin-sentiment",
    "mayurjadhav/crypto-sentiment-model",
    "cardiffnlp/twitter-roberta-base-sentiment",
    "mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis",
    "agarkovv/CryptoTrader-LM"
]

CRYPTO_SENTIMENT_MODELS = ACTIVE_MODELS[:2] + LEGACY_MODELS[:2]
SOCIAL_SENTIMENT_MODELS = LEGACY_MODELS[2:4]
FINANCIAL_SENTIMENT_MODELS = [ACTIVE_MODELS[2]] + [LEGACY_MODELS[4]]
NEWS_SENTIMENT_MODELS = [LEGACY_MODELS[5]]
DECISION_MODELS = [LEGACY_MODELS[6]]

@dataclass(frozen=True)
class PipelineSpec:
    key: str
    task: str
    model_id: str
    requires_auth: bool = False
    category: str = "sentiment"

MODEL_SPECS: Dict[str, PipelineSpec] = {}

# Legacy models
for lk in ["sentiment_twitter", "sentiment_financial", "summarization", "crypto_sentiment"]:
    if lk in HUGGINGFACE_MODELS:
        MODEL_SPECS[lk] = PipelineSpec(
            key=lk,
            task="sentiment-analysis" if "sentiment" in lk else "summarization",
            model_id=HUGGINGFACE_MODELS[lk],
            category="legacy"
        )

for i, mid in enumerate(ACTIVE_MODELS):
    MODEL_SPECS[f"active_{i}"] = PipelineSpec(
        key=f"active_{i}", task="sentiment-analysis", model_id=mid,
        category="crypto_sentiment" if i < 2 else "financial_sentiment",
        requires_auth=("ElKulako" in mid)
    )

for i, mid in enumerate(CRYPTO_SENTIMENT_MODELS):
    MODEL_SPECS[f"crypto_sent_{i}"] = PipelineSpec(
        key=f"crypto_sent_{i}", task="sentiment-analysis", model_id=mid,
        category="crypto_sentiment", requires_auth=("ElKulako" in mid)
    )

for i, mid in enumerate(SOCIAL_SENTIMENT_MODELS):
    MODEL_SPECS[f"social_sent_{i}"] = PipelineSpec(
        key=f"social_sent_{i}", task="sentiment-analysis", model_id=mid, category="social_sentiment"
    )

for i, mid in enumerate(FINANCIAL_SENTIMENT_MODELS):
    MODEL_SPECS[f"financial_sent_{i}"] = PipelineSpec(
        key=f"financial_sent_{i}", task="sentiment-analysis", model_id=mid, category="financial_sentiment"
    )

for i, mid in enumerate(NEWS_SENTIMENT_MODELS):
    MODEL_SPECS[f"news_sent_{i}"] = PipelineSpec(
        key=f"news_sent_{i}", task="sentiment-analysis", model_id=mid, category="news_sentiment"
    )

class ModelNotAvailable(RuntimeError): pass

class ModelRegistry:
    def __init__(self):
        self._pipelines = {}
        self._lock = threading.Lock()
        self._initialized = False

    def get_pipeline(self, key: str):
        if not TRANSFORMERS_AVAILABLE:
            raise ModelNotAvailable("transformers not installed")
        if key not in MODEL_SPECS:
            raise ModelNotAvailable(f"Unknown key: {key}")
        
        spec = MODEL_SPECS[key]
        if key in self._pipelines:
            return self._pipelines[key]
        
        with self._lock:
            if key in self._pipelines:
                return self._pipelines[key]
            
            if HF_MODE == "off":
                raise ModelNotAvailable("HF_MODE=off")
            
            token_value = None
            if HF_MODE == "auth":
                token_value = HF_TOKEN_ENV or settings.hf_token
            elif HF_MODE == "public":
                token_value = None
            
            if spec.requires_auth and not token_value:
                raise ModelNotAvailable("Model requires auth but no token available")
            
            logger.info(f"Loading model: {spec.model_id} (mode: {HF_MODE})")
            try:
                pipeline_kwargs = {
                    'task': spec.task,
                    'model': spec.model_id,
                    'tokenizer': spec.model_id,
                    'framework': 'pt',
                    'device': -1,
                }
                pipeline_kwargs['token'] = token_value
                
                self._pipelines[key] = pipeline(**pipeline_kwargs)
            except Exception as e:
                error_msg = str(e)
                error_lower = error_msg.lower()
                
                try:
                    from huggingface_hub.errors import RepositoryNotFoundError, HfHubHTTPError
                    hf_errors = (RepositoryNotFoundError, HfHubHTTPError)
                except ImportError:
                    hf_errors = ()
                
                is_auth_error = any(kw in error_lower for kw in ['401', 'unauthorized', 'repository not found', 'expired', 'token'])
                is_hf_error = isinstance(e, hf_errors) or is_auth_error
                
                if is_hf_error:
                    logger.warning(f"HF error for {spec.model_id}: {type(e).__name__}")
                    raise ModelNotAvailable(f"HF error: {spec.model_id}") from e
                
                if any(kw in error_lower for kw in ['keras', 'tensorflow', 'tf_keras', 'framework']):
                    try:
                        pipeline_kwargs['torch_dtype'] = 'float32'
                        self._pipelines[key] = pipeline(**pipeline_kwargs)
                        return self._pipelines[key]
                    except Exception:
                        raise ModelNotAvailable(f"Framework error: {spec.model_id}") from e
                
                raise ModelNotAvailable(f"Load failed: {spec.model_id}") from e
        
        return self._pipelines[key]
    
    def get_loaded_models(self):
        """Get list of all loaded model keys"""
        return list(self._pipelines.keys())
    
    def get_available_sentiment_models(self):
        """Get list of all available sentiment model keys"""
        return [key for key in MODEL_SPECS.keys() if "sent" in key or "sentiment" in key]

    def initialize_models(self):
        if self._initialized:
            return {"status": "already_initialized", "mode": HF_MODE, "models_loaded": len(self._pipelines)}
        
        if HF_MODE == "off":
            self._initialized = True
            return {"status": "disabled", "mode": "off", "models_loaded": 0, "loaded": [], "failed": []}
        
        if not TRANSFORMERS_AVAILABLE:
            return {"status": "transformers_not_available", "mode": HF_MODE, "models_loaded": 0}
        
        loaded, failed = [], []
        active_keys = [f"active_{i}" for i in range(len(ACTIVE_MODELS))]
        
        for key in active_keys:
            try:
                self.get_pipeline(key)
                loaded.append(key)
            except ModelNotAvailable as e:
                failed.append((key, str(e)[:100]))
            except Exception as e:
                error_msg = str(e)[:100]
                failed.append((key, error_msg))
        
        self._initialized = True
        status = "initialized" if loaded else "partial"
        return {"status": status, "mode": HF_MODE, "models_loaded": len(loaded), "loaded": loaded, "failed": failed}

_registry = ModelRegistry()

AI_MODELS_SUMMARY = {"status": "not_initialized", "mode": "off", "models_loaded": 0, "loaded": [], "failed": []}

def initialize_models():
    global AI_MODELS_SUMMARY
    result = _registry.initialize_models()
    AI_MODELS_SUMMARY = result
    return result

def ensemble_crypto_sentiment(text: str) -> Dict[str, Any]:
    if not TRANSFORMERS_AVAILABLE or HF_MODE == "off":
        return {"label": "neutral", "confidence": 0.0, "scores": {}, "model_count": 0, "error": "HF disabled" if HF_MODE == "off" else "transformers N/A"}
    
    results, labels_count, total_conf = {}, {"bullish": 0, "bearish": 0, "neutral": 0}, 0.0
    
    loaded_keys = _registry.get_loaded_models()
    available_keys = [key for key in loaded_keys if "sent" in key or "sentiment" in key or key.startswith("active_")]
    
    if not available_keys:
        return {"label": "neutral", "confidence": 0.0, "scores": {}, "model_count": 0, "error": "No models loaded"}
    
    for key in available_keys:
        try:
            pipe = _registry.get_pipeline(key)
            res = pipe(text[:512])
            if isinstance(res, list) and res: res = res[0]
            
            label = res.get("label", "NEUTRAL").upper()
            score = res.get("score", 0.5)
            
            mapped = "bullish" if "POSITIVE" in label or "BULLISH" in label else ("bearish" if "NEGATIVE" in label or "BEARISH" in label else "neutral")
            
            spec = MODEL_SPECS.get(key)
            if spec:
                results[spec.model_id] = {"label": mapped, "score": score}
            else:
                results[key] = {"label": mapped, "score": score}
            labels_count[mapped] += 1
            total_conf += score
        except ModelNotAvailable:
            continue
        except Exception as e:
            logger.warning(f"Ensemble failed for {key}: {e}")
    
    if not results:
        return {"label": "neutral", "confidence": 0.0, "scores": {}, "model_count": 0, "error": "All models failed"}
    
    final = max(labels_count, key=labels_count.get)
    avg_conf = total_conf / len(results)
    
    return {"label": final, "confidence": avg_conf, "scores": results, "model_count": len(results)}

def analyze_crypto_sentiment(text: str): return ensemble_crypto_sentiment(text)

def analyze_financial_sentiment(text: str):
    if not TRANSFORMERS_AVAILABLE:
        return {"label": "neutral", "score": 0.5, "error": "transformers N/A"}
    try:
        pipe = _registry.get_pipeline("financial_sent_0")
        res = pipe(text[:512])
        if isinstance(res, list) and res: res = res[0]
        return {"label": res.get("label", "neutral").lower(), "score": res.get("score", 0.5)}
    except Exception as e:
        logger.error(f"Financial sentiment failed: {e}")
        return {"label": "neutral", "score": 0.5, "error": str(e)}

def analyze_social_sentiment(text: str):
    if not TRANSFORMERS_AVAILABLE:
        return {"label": "neutral", "score": 0.5, "error": "transformers N/A"}
    try:
        pipe = _registry.get_pipeline("social_sent_0")
        res = pipe(text[:512])
        if isinstance(res, list) and res: res = res[0]
        return {"label": res.get("label", "neutral").lower(), "score": res.get("score", 0.5)}
    except Exception as e:
        logger.error(f"Social sentiment failed: {e}")
        return {"label": "neutral", "score": 0.5, "error": str(e)}

def analyze_market_text(text: str): return ensemble_crypto_sentiment(text)

def analyze_chart_points(data: Sequence[Mapping[str, Any]], indicators: Optional[List[str]] = None):
    if not data: return {"trend": "neutral", "strength": 0, "analysis": "No data"}
    
    prices = [float(p.get("price", 0)) for p in data if p.get("price")]
    if not prices: return {"trend": "neutral", "strength": 0, "analysis": "No price data"}
    
    first, last = prices[0], prices[-1]
    change = ((last - first) / first * 100) if first > 0 else 0
    
    if change > 5: trend, strength = "bullish", min(abs(change) / 10, 1.0)
    elif change < -5: trend, strength = "bearish", min(abs(change) / 10, 1.0)
    else: trend, strength = "neutral", abs(change) / 5
    
    return {"trend": trend, "strength": strength, "change_pct": change, "support": min(prices), "resistance": max(prices), "analysis": f"Price moved {change:.2f}% showing {trend} trend"}

def analyze_news_item(item: Dict[str, Any]):
    text = item.get("title", "") + " " + item.get("description", "")
    sent = ensemble_crypto_sentiment(text)
    return {**item, "sentiment": sent["label"], "sentiment_confidence": sent["confidence"], "sentiment_details": sent}

def get_model_info():
    return {
        "transformers_available": TRANSFORMERS_AVAILABLE,
        "hf_mode": HF_MODE,
        "hf_token_configured": bool(HF_TOKEN_ENV or settings.hf_token) if HF_MODE == "auth" else False,
        "models_initialized": _registry._initialized,
        "models_loaded": len(_registry._pipelines),
        "active_models": ACTIVE_MODELS,
        "total_models": len(MODEL_SPECS)
    }

def registry_status():
    return {
        "initialized": _registry._initialized,
        "pipelines_loaded": len(_registry._pipelines),
        "available_models": list(MODEL_SPECS.keys()),
        "transformers_available": TRANSFORMERS_AVAILABLE
    }