# 🚀 Crypto-DT-Source: Complete HuggingFace Deployment Prompt **Purpose:** Complete guide to activate ALL features in the Crypto-DT-Source project for production deployment on HuggingFace Spaces **Target Environment:** HuggingFace Spaces + Python 3.11+ **Deployment Season:** Q4 2025 **Status:** Ready for Implementation --- ## 📋 Executive Summary This prompt provides a **complete roadmap** to transform Crypto-DT-Source from a monitoring platform into a **fully-functional cryptocurrency data aggregation service**. All 50+ endpoints will be connected to real data sources, database persistence will be integrated, AI models will be loaded, and the system will be optimized for HuggingFace Spaces deployment. **Expected Outcome:** - ✅ Real crypto market data (live prices, OHLCV, trending coins) - ✅ Historical data storage in SQLite - ✅ AI-powered sentiment analysis using HuggingFace transformers - ✅ Authentication + rate limiting on all endpoints - ✅ WebSocket real-time streaming - ✅ Provider health monitoring with intelligent failover - ✅ Automatic provider discovery - ✅ Full diagnostic and monitoring capabilities - ✅ Production-ready Docker deployment to HF Spaces --- ## 🎯 Implementation Priorities (Phase 1-4) ### **Phase 1: Core Data Integration (CRITICAL)** *Goal: Replace all mock data with real API calls* #### 1.1 Market Data Endpoints **Files to modify:** - `api/endpoints.py` - `/api/market`, `/api/prices` - `collectors/market_data_extended.py` - Real price fetching - `api_server_extended.py` - FastAPI endpoints **Requirements:** - Remove all hardcoded mock data from endpoints - Implement real API calls to CoinGecko, CoinCap, Binance - Use async/await pattern for non-blocking calls - Implement caching layer (5-minute TTL for prices) - Add error handling with provider fallback **Implementation Steps:** ```python # Example: Replace mock market data with real provider data GET /api/market ├── Call ProviderManager.get_best_provider('market_data') ├── Execute async request to provider ├── Cache response (5 min TTL) ├── Return real BTC/ETH prices instead of mock └── Fallback to secondary provider on failure GET /api/prices?symbols=BTC,ETH,SOL ├── Parse symbol list ├── Call ProviderManager for each symbol ├── Aggregate responses ├── Return real-time price data GET /api/trending ├── Call CoinGecko trending endpoint ├── Store in database └── Return top 7 trending coins GET /api/ohlcv?symbol=BTCUSDT&interval=1h&limit=100 ├── Call Binance OHLCV endpoint ├── Validate symbol format ├── Apply caching (15-min TTL) └── Return historical OHLCV data ``` **Success Criteria:** - [ ] All endpoints return real data from providers - [ ] Caching implemented with configurable TTL - [ ] Provider failover working (when primary fails) - [ ] Response times < 2 seconds - [ ] No hardcoded mock data in endpoint responses --- #### 1.2 DeFi Data Endpoints **Files to modify:** - `api_server_extended.py` - `/api/defi` endpoint - `collectors/` - Add DeFi collector **Requirements:** - Fetch TVL data from DeFi Llama API - Track top DeFi protocols - Cache for 1 hour (DeFi data updates less frequently) **Implementation:** ```python GET /api/defi ├── Call DeFi Llama: GET /protocols ├── Filter top 20 by TVL ├── Parse response (name, TVL, chain, symbol) ├── Store in database (defi_protocols table) └── Return with timestamp GET /api/defi/tvl-chart ├── Query historical TVL from database ├── Aggregate by date └── Return 30-day TVL trend ``` --- #### 1.3 News & Sentiment Integration **Files to modify:** - `collectors/sentiment_extended.py` - `api/endpoints.py` - `/api/sentiment` endpoint **Requirements:** - Fetch news from RSS feeds (CoinDesk, Cointelegraph, etc.) - Implement real HuggingFace sentiment analysis (NOT keyword matching) - Store sentiment scores in database - Track Fear & Greed Index **Implementation:** ```python GET /api/sentiment ├── Query recent news from database ├── Load HuggingFace model: distilbert-base-uncased-finetuned-sst-2-english ├── Analyze each headline/article ├── Calculate aggregate sentiment score ├── Return: {overall_sentiment, fear_greed_index, top_sentiments} GET /api/news ├── Fetch from RSS feeds (configurable) ├── Run through sentiment analyzer ├── Store in database (news table with sentiment) ├── Return paginated results POST /api/analyze/text ├── Accept raw text input ├── Run HuggingFace sentiment model ├── Return: {text, sentiment, confidence, label} ``` --- ### **Phase 2: Database Integration (HIGH PRIORITY)** *Goal: Full persistent storage of all data* #### 2.1 Database Schema Activation **Files:** - `database/models.py` - Define all tables - `database/migrations.py` - Schema setup - `database/db_manager.py` - Connection management **Tables to Activate:** ```sql -- Core tables prices (id, symbol, price, timestamp, provider) ohlcv (id, symbol, open, high, low, close, volume, timestamp) news (id, title, content, sentiment, source, timestamp) defi_protocols (id, name, tvl, chain, timestamp) market_snapshots (id, btc_price, eth_price, market_cap, timestamp) -- Metadata tables providers (id, name, status, health_score, last_check) pools (id, name, strategy, created_at) api_calls (id, endpoint, provider, response_time, status) user_requests (id, ip_address, endpoint, timestamp) ``` **Implementation:** ```python # In api_server_extended.py startup: @app.on_event("startup") async def startup_event(): # Initialize database db_manager = DBManager() await db_manager.initialize() # Run migrations await db_manager.run_migrations() # Create tables if not exist await db_manager.create_all_tables() # Verify connectivity health = await db_manager.health_check() logger.info(f"Database initialized: {health}") ``` #### 2.2 API Endpoints ↔ Database Integration **Pattern to implement:** ```python # Write pattern: After fetching real data, store it async def store_market_snapshot(): # Fetch real data prices = await provider_manager.get_market_data() # Store in database async with db.session() as session: snapshot = MarketSnapshot( btc_price=prices['BTC'], eth_price=prices['ETH'], market_cap=prices['market_cap'], timestamp=datetime.now() ) session.add(snapshot) await session.commit() return prices # Read pattern: Query historical data @app.get("/api/prices/history/{symbol}") async def get_price_history(symbol: str, days: int = 30): async with db.session() as session: history = await session.query(Price).filter( Price.symbol == symbol, Price.timestamp >= datetime.now() - timedelta(days=days) ).all() return [{"price": p.price, "timestamp": p.timestamp} for p in history] ``` **Success Criteria:** - [ ] All real-time data is persisted to database - [ ] Historical queries return > 30 days of data - [ ] Database is queried for price history endpoints - [ ] Migrations run automatically on startup - [ ] No data loss on server restart --- ### **Phase 3: AI & Sentiment Analysis (MEDIUM PRIORITY)** *Goal: Real ML-powered sentiment analysis* #### 3.1 Load HuggingFace Models **Files:** - `ai_models.py` - Model loading and inference - Update `requirements.txt` with torch, transformers **Models to Load:** ```python # Sentiment Analysis SENTIMENT_MODELS = [ "distilbert-base-uncased-finetuned-sst-2-english", # Fast, accurate "cardiffnlp/twitter-roberta-base-sentiment-latest", # Social media optimized "ProsusAI/finBERT", # Financial sentiment ] # Crypto-specific models CRYPTO_MODELS = [ "EleutherAI/gpt-neo-125M", # General purpose (lightweight) "facebook/opt-125m", # Instruction following ] # Zero-shot classification for custom sentiment "facebook/bart-large-mnli" # Multi-class sentiment (bullish/bearish/neutral) ``` **Implementation:** ```python # ai_models.py class AIModelManager: def __init__(self): self.models = {} self.device = "cuda" if torch.cuda.is_available() else "cpu" async def initialize(self): """Load all models on startup""" logger.info("Loading HuggingFace models...") # Sentiment analysis self.models['sentiment'] = pipeline( "sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english", device=0 if self.device == "cuda" else -1 ) # Zero-shot for crypto sentiment self.models['zeroshot'] = pipeline( "zero-shot-classification", model="facebook/bart-large-mnli", device=0 if self.device == "cuda" else -1 ) logger.info("Models loaded successfully") async def analyze_sentiment(self, text: str) -> dict: """Analyze sentiment of text""" if not self.models.get('sentiment'): return {"error": "Model not loaded", "sentiment": "unknown"} result = self.models['sentiment'](text)[0] return { "text": text[:100], "label": result['label'], "score": result['score'], "timestamp": datetime.now().isoformat() } async def analyze_crypto_sentiment(self, text: str) -> dict: """Crypto-specific sentiment (bullish/bearish/neutral)""" candidate_labels = ["bullish", "bearish", "neutral"] result = self.models['zeroshot'](text, candidate_labels) return { "text": text[:100], "sentiment": result['labels'][0], "scores": dict(zip(result['labels'], result['scores'])), "timestamp": datetime.now().isoformat() } # In api_server_extended.py ai_manager = AIModelManager() @app.on_event("startup") async def startup(): await ai_manager.initialize() @app.post("/api/sentiment/analyze") async def analyze_sentiment(request: AnalyzeRequest): """Real sentiment analysis endpoint""" result = await ai_manager.analyze_sentiment(request.text) return result @app.post("/api/sentiment/crypto-analysis") async def crypto_sentiment(request: AnalyzeRequest): """Crypto-specific sentiment analysis""" result = await ai_manager.analyze_crypto_sentiment(request.text) return result ``` #### 3.2 News Sentiment Pipeline **Implementation:** ```python # Background task: Analyze news sentiment continuously async def analyze_news_sentiment(): """Run every 30 minutes: fetch news and analyze sentiment""" while True: try: # 1. Fetch recent news from feeds news_items = await fetch_rss_feeds() # 2. Store news items for item in news_items: # 3. Analyze sentiment sentiment = await ai_manager.analyze_sentiment(item['title']) # 4. Store in database async with db.session() as session: news = News( title=item['title'], content=item['content'], source=item['source'], sentiment=sentiment['label'], confidence=sentiment['score'], timestamp=datetime.now() ) session.add(news) await session.commit() logger.info(f"Analyzed {len(news_items)} news items") except Exception as e: logger.error(f"News sentiment pipeline error: {e}") # Wait 30 minutes await asyncio.sleep(1800) # Start in background on app startup @app.on_event("startup") async def startup(): asyncio.create_task(analyze_news_sentiment()) ``` --- ### **Phase 4: Security & Production Setup (HIGH PRIORITY)** *Goal: Production-ready authentication, rate limiting, and monitoring* #### 4.1 Authentication Implementation **Files:** - `utils/auth.py` - JWT token handling - `api/security.py` - New file for security middleware **Implementation:** ```python # utils/auth.py from fastapi import Depends, HTTPException, status from fastapi.security import HTTPBearer, HTTPAuthCredentials import jwt from datetime import datetime, timedelta SECRET_KEY = os.getenv("JWT_SECRET_KEY", "your-secret-key-change-in-production") ALGORITHM = "HS256" class AuthManager: @staticmethod def create_token(user_id: str, hours: int = 24) -> str: """Create JWT token""" payload = { "user_id": user_id, "exp": datetime.utcnow() + timedelta(hours=hours), "iat": datetime.utcnow() } return jwt.encode(payload, SECRET_KEY, algorithm=ALGORITHM) @staticmethod def verify_token(token: str) -> str: """Verify JWT token""" try: payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM]) return payload.get("user_id") except jwt.ExpiredSignatureError: raise HTTPException(status_code=401, detail="Token expired") except jwt.InvalidTokenError: raise HTTPException(status_code=401, detail="Invalid token") security = HTTPBearer() auth_manager = AuthManager() async def get_current_user(credentials: HTTPAuthCredentials = Depends(security)): """Dependency for protected endpoints""" return auth_manager.verify_token(credentials.credentials) # In api_server_extended.py @app.post("/api/auth/token") async def get_token(api_key: str): """Issue JWT token for API key""" # Validate API key against database user = await verify_api_key(api_key) if not user: raise HTTPException(status_code=401, detail="Invalid API key") token = auth_manager.create_token(user.id) return {"access_token": token, "token_type": "bearer"} # Protected endpoint example @app.get("/api/protected-data") async def protected_endpoint(current_user: str = Depends(get_current_user)): """This endpoint requires authentication""" return {"user_id": current_user, "data": "sensitive"} ``` #### 4.2 Rate Limiting **Files:** - `utils/rate_limiter_enhanced.py` - Enhanced rate limiter **Implementation:** ```python # In api_server_extended.py from slowapi import Limiter from slowapi.util import get_remote_address from slowapi.errors import RateLimitExceeded limiter = Limiter(key_func=get_remote_address) app.state.limiter = limiter # Rate limit configuration FREE_TIER = "30/minute" # 30 requests per minute PRO_TIER = "300/minute" # 300 requests per minute ADMIN_TIER = None # Unlimited @app.exception_handler(RateLimitExceeded) async def rate_limit_handler(request, exc): return JSONResponse( status_code=429, content={"error": "Rate limit exceeded", "retry_after": 60} ) # Apply to endpoints @app.get("/api/prices") @limiter.limit(FREE_TIER) async def get_prices(request: Request): return await prices_handler() @app.get("/api/sentiment") @limiter.limit(FREE_TIER) async def get_sentiment(request: Request): return await sentiment_handler() # Premium endpoints @app.get("/api/historical-data") @limiter.limit(PRO_TIER) async def get_historical_data(request: Request, current_user: str = Depends(get_current_user)): return await historical_handler() ``` **Tier Configuration:** ```python RATE_LIMIT_TIERS = { "free": { "requests_per_minute": 30, "requests_per_day": 1000, "max_symbols": 5, "data_retention_days": 7 }, "pro": { "requests_per_minute": 300, "requests_per_day": 50000, "max_symbols": 100, "data_retention_days": 90 }, "enterprise": { "requests_per_minute": None, # Unlimited "requests_per_day": None, "max_symbols": None, "data_retention_days": None } } ``` --- #### 4.3 Monitoring & Diagnostics **Files:** - `api/endpoints.py` - Diagnostic endpoints - `monitoring/health_monitor.py` - Health checks **Implementation:** ```python @app.get("/api/health") async def health_check(): """Comprehensive health check""" return { "status": "healthy", "timestamp": datetime.now().isoformat(), "components": { "database": await check_database(), "providers": await check_providers(), "models": await check_models(), "websocket": await check_websocket(), "cache": await check_cache() }, "metrics": { "uptime_seconds": get_uptime(), "active_connections": active_ws_count(), "request_count_1h": get_request_count("1h"), "average_response_time_ms": get_avg_response_time() } } @app.post("/api/diagnostics/run") async def run_diagnostics(auto_fix: bool = False): """Full system diagnostics""" issues = [] fixes = [] # Check all components checks = [ check_database_integrity(), check_provider_health(), check_disk_space(), check_memory_usage(), check_model_availability(), check_config_files(), check_required_directories(), verify_api_connectivity() ] results = await asyncio.gather(*checks) for check in results: if check['status'] != 'ok': issues.append(check) if auto_fix: fix = await apply_fix(check) fixes.append(fix) return { "timestamp": datetime.now().isoformat(), "total_checks": len(checks), "issues_found": len(issues), "issues": issues, "fixes_applied": fixes if auto_fix else [] } @app.get("/api/metrics") async def get_metrics(): """System metrics for monitoring""" return { "cpu_percent": psutil.cpu_percent(interval=1), "memory_percent": psutil.virtual_memory().percent, "disk_percent": psutil.disk_usage('/').percent, "database_size_mb": get_database_size() / 1024 / 1024, "active_requests": active_request_count(), "websocket_connections": active_ws_count(), "provider_stats": await get_provider_statistics() } ``` --- ### **Phase 5: Background Tasks & Auto-Discovery** *Goal: Continuous operation with automatic provider discovery* #### 5.1 Background Tasks **Files:** - `scheduler.py` - Task scheduling - `monitoring/scheduler_comprehensive.py` - Enhanced scheduler **Tasks to Activate:** ```python # In api_server_extended.py @app.on_event("startup") async def start_background_tasks(): """Start all background tasks""" tasks = [ # Data collection tasks asyncio.create_task(collect_prices_every_5min()), asyncio.create_task(collect_defi_data_every_hour()), asyncio.create_task(fetch_news_every_30min()), asyncio.create_task(analyze_sentiment_every_hour()), # Health & monitoring tasks asyncio.create_task(health_check_every_5min()), asyncio.create_task(broadcast_stats_every_5min()), asyncio.create_task(cleanup_old_logs_daily()), asyncio.create_task(backup_database_daily()), asyncio.create_task(send_diagnostics_hourly()), # Discovery tasks (optional) asyncio.create_task(discover_new_providers_daily()), ] logger.info(f"Started {len(tasks)} background tasks") # Scheduled tasks with cron-like syntax TASK_SCHEDULE = { "collect_prices": "*/5 * * * *", # Every 5 minutes "collect_defi": "0 * * * *", # Hourly "fetch_news": "*/30 * * * *", # Every 30 minutes "sentiment_analysis": "0 * * * *", # Hourly "health_check": "*/5 * * * *", # Every 5 minutes "backup_database": "0 2 * * *", # Daily at 2 AM "cleanup_logs": "0 3 * * *", # Daily at 3 AM } ``` #### 5.2 Auto-Discovery Service **Files:** - `backend/services/auto_discovery_service.py` - Discovery logic **Implementation:** ```python # Enable in environment ENABLE_AUTO_DISCOVERY=true AUTO_DISCOVERY_INTERVAL_HOURS=24 class AutoDiscoveryService: """Automatically discover new crypto API providers""" async def discover_providers(self) -> List[Provider]: """Scan for new providers""" discovered = [] sources = [ self.scan_github_repositories, self.scan_api_directories, self.scan_rss_feeds, self.query_existing_apis, ] for source in sources: try: providers = await source() discovered.extend(providers) logger.info(f"Discovered {len(providers)} from {source.__name__}") except Exception as e: logger.error(f"Discovery error in {source.__name__}: {e}") # Validate and store valid = [] for provider in discovered: if await self.validate_provider(provider): await self.store_provider(provider) valid.append(provider) return valid async def scan_github_repositories(self): """Search GitHub for crypto API projects""" # Query GitHub API for relevant repos # Extract API endpoints # Return as Provider objects pass async def validate_provider(self, provider: Provider) -> bool: """Test if provider is actually available""" try: async with aiohttp.ClientSession() as session: async with session.get( provider.base_url, timeout=aiohttp.ClientTimeout(total=5) ) as resp: return resp.status < 500 except: return False # Start discovery on demand @app.post("/api/discovery/run") async def trigger_discovery(background: bool = True): """Trigger provider discovery""" discovery_service = AutoDiscoveryService() if background: asyncio.create_task(discovery_service.discover_providers()) return {"status": "Discovery started in background"} else: providers = await discovery_service.discover_providers() return {"discovered": len(providers), "providers": providers} ``` --- ## 🐳 HuggingFace Spaces Deployment ### Configuration for HF Spaces **`spaces/app.py` (Entry point):** ```python import os import sys # Set environment for HF Spaces os.environ['HF_SPACE'] = 'true' os.environ['PORT'] = '7860' # HF Spaces default port # Import and start the main FastAPI app from api_server_extended import app if __name__ == "__main__": import uvicorn uvicorn.run( app, host="0.0.0.0", port=7860, log_level="info" ) ``` **`spaces/requirements.txt`:** ``` fastapi==0.109.0 uvicorn[standard]==0.27.0 aiohttp==3.9.1 pydantic==2.5.3 websockets==12.0 sqlalchemy==2.0.23 torch==2.1.1 transformers==4.35.2 huggingface-hub==0.19.1 slowapi==0.1.9 python-jose==3.3.0 psutil==5.9.6 aiofiles==23.2.1 ``` **`spaces/README.md`:** ```markdown # Crypto-DT-Source on HuggingFace Spaces Real-time cryptocurrency data aggregation service with 200+ providers. ## Features - Real-time price data - AI sentiment analysis - 50+ REST endpoints - WebSocket streaming - Provider health monitoring - Historical data storage ## API Documentation - Swagger UI: https://[your-space-url]/docs - ReDoc: https://[your-space-url]/redoc ## Quick Start ```bash curl https://[your-space-url]/api/health curl https://[your-space-url]/api/prices?symbols=BTC,ETH curl https://[your-space-url]/api/sentiment ``` ## WebSocket Connection ```javascript const ws = new WebSocket('wss://[your-space-url]/ws'); ws.onmessage = (event) => console.log(JSON.parse(event.data)); ``` ``` --- ## ✅ Activation Checklist ### Phase 1: Data Integration - [ ] Modify `/api/market` to return real CoinGecko data - [ ] Modify `/api/prices` to fetch real provider data - [ ] Modify `/api/trending` to return live trending coins - [ ] Implement `/api/ohlcv` with Binance data - [ ] Implement `/api/defi` with DeFi Llama data - [ ] Remove all hardcoded mock data - [ ] Test all endpoints with real data - [ ] Add caching layer (5-30 min TTL based on endpoint) ### Phase 2: Database - [ ] Run database migrations - [ ] Create all required tables - [ ] Implement write pattern for real data storage - [ ] Implement read pattern for historical queries - [ ] Add database health check - [ ] Test data persistence across restarts - [ ] Implement cleanup tasks for old data ### Phase 3: AI & Sentiment - [ ] Install transformers and torch - [ ] Load HuggingFace sentiment model - [ ] Implement sentiment analysis endpoint - [ ] Implement crypto-specific sentiment classification - [ ] Create news sentiment pipeline - [ ] Store sentiment scores in database - [ ] Test model inference latency ### Phase 4: Security - [ ] Generate JWT secret key - [ ] Implement authentication middleware - [ ] Create API key management system - [ ] Implement rate limiting on all endpoints - [ ] Add tier-based rate limits (free/pro/enterprise) - [ ] Create `/api/auth/token` endpoint - [ ] Test authentication on protected endpoints - [ ] Set up HTTPS certificate for CORS ### Phase 5: Background Tasks - [ ] Activate all scheduled tasks - [ ] Set up price collection (every 5 min) - [ ] Set up DeFi data collection (hourly) - [ ] Set up news fetching (every 30 min) - [ ] Set up sentiment analysis (hourly) - [ ] Set up health checks (every 5 min) - [ ] Set up database backup (daily) - [ ] Set up log cleanup (daily) ### Phase 6: HF Spaces Deployment - [ ] Create `spaces/` directory - [ ] Create `spaces/app.py` entry point - [ ] Create `spaces/requirements.txt` - [ ] Create `spaces/README.md` - [ ] Configure environment variables - [ ] Test locally with Docker - [ ] Push to HF Spaces - [ ] Verify all endpoints accessible - [ ] Monitor logs and metrics - [ ] Set up auto-restart on failure --- ## 🔧 Environment Variables ```bash # Core PORT=7860 ENVIRONMENT=production LOG_LEVEL=info # Database DATABASE_URL=sqlite:///data/crypto_aggregator.db DATABASE_POOL_SIZE=20 # Security JWT_SECRET_KEY=your-secret-key-change-in-production API_KEY_SALT=your-salt-key # HuggingFace Spaces HF_SPACE=true HF_SPACE_URL=https://huggingface.co/spaces/your-username/crypto-dt-source # Features ENABLE_AUTO_DISCOVERY=true ENABLE_SENTIMENT_ANALYSIS=true ENABLE_BACKGROUND_TASKS=true # Rate Limiting FREE_TIER_LIMIT=30/minute PRO_TIER_LIMIT=300/minute # Caching CACHE_TTL_PRICES=300 # 5 minutes CACHE_TTL_DEFI=3600 # 1 hour CACHE_TTL_NEWS=1800 # 30 minutes # Providers (optional API keys) ETHERSCAN_API_KEY= BSCSCAN_API_KEY= COINGECKO_API_KEY= ``` --- ## 📊 Expected Performance After implementation: | Metric | Target | Current | |--------|--------|---------| | Price endpoint response time | < 500ms | N/A | | Sentiment analysis latency | < 2s | N/A | | WebSocket update frequency | Real-time | ✅ Working | | Database query latency | < 100ms | N/A | | Provider failover time | < 2s | ✅ Working | | Authentication overhead | < 50ms | N/A | | Concurrent connections supported | 1000+ | ✅ Tested | --- ## 🚨 Troubleshooting ### Models not loading on HF Spaces ```bash # HF Spaces has limited disk space # Use distilbert models (smaller) instead of full models # Or cache models in requirements pip install --no-cache-dir transformers torch ``` ### Database file too large ```bash # Implement cleanup task # Keep only 90 days of data # Archive old data to S3 ``` ### Rate limiting too aggressive ```bash # Adjust limits in environment FREE_TIER_LIMIT=100/minute PRO_TIER_LIMIT=500/minute ``` ### WebSocket disconnections ```bash # Increase heartbeat frequency WEBSOCKET_HEARTBEAT_INTERVAL=10 # seconds WEBSOCKET_HEARTBEAT_TIMEOUT=30 # seconds ``` --- ## 📚 Next Steps 1. **Review Phase 1-2**: Data integration and database 2. **Review Phase 3-4**: AI and security implementations 3. **Review Phase 5-6**: Background tasks and HF deployment 4. **Execute implementation** following the checklist 5. **Test thoroughly** before production deployment 6. **Monitor metrics** and adjust configurations 7. **Collect user feedback** and iterate --- ## 🎯 Success Criteria Project is **production-ready** when: ✅ All 50+ endpoints return real data ✅ Database stores 90 days of historical data ✅ Sentiment analysis runs on real ML models ✅ Authentication required on all protected endpoints ✅ Rate limiting enforced across all tiers ✅ Background tasks running without errors ✅ Health check returns all components OK ✅ WebSocket clients can stream real-time data ✅ Auto-discovery discovers new providers ✅ Deployed on HuggingFace Spaces successfully ✅ Average response time < 1 second ✅ Zero downtime during operation --- **Document Version:** 2.0 **Last Updated:** 2025-11-15 **Maintained by:** Claude Code AI **Status:** Ready for Implementation