Spaces:
Sleeping
Sleeping
File size: 9,164 Bytes
ff5d4b2 1ccd330 ff5d4b2 c384ef1 ff5d4b2 1ccd330 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
---
title: AGI Multi-Model API
emoji: π»
colorFrom: purple
colorTo: green
sdk: docker
pinned: false
license: apache-2.0
short_description: Multi-model LLM API with caching and web search
---
# AGI Multi-Model API
A high-performance FastAPI server for running multiple LLM models with intelligent in-memory caching and web search capabilities. Switch between models instantly and augment responses with real-time web data.
## β¨ Features
- **π Dynamic Model Switching**: Hot-swap between 5 different LLM models
- **β‘ Intelligent Caching**: LRU cache keeps up to 2 models in memory for instant switching
- **π Web-Augmented Chat**: Real-time web search integration via DuckDuckGo
- **π OpenAI-Compatible API**: Drop-in replacement for OpenAI chat completions
- **π Auto-Generated Documentation**: Interactive API docs with Swagger UI and ReDoc
- **π Optimized Performance**: Continuous batching and multi-port architecture
## π€ Available Models
| Model | Use Case | Size |
|-------|----------|------|
| **deepseek-chat** (default) | General purpose conversation | 7B |
| **mistral-7b** | Financial analysis & summarization | 7B |
| **openhermes-7b** | Advanced instruction following | 7B |
| **deepseek-coder** | Specialized coding assistance | 6.7B |
| **llama-7b** | Lightweight & fast responses | 7B |
## π Quick Start
### Prerequisites
- Python 3.10+
- `llama-server` (llama.cpp)
- 8GB+ RAM (16GB+ recommended for caching multiple models)
### Installation
```bash
# Clone the repository
git clone <your-repo-url>
cd AGI
# Install dependencies
pip install -r requirements.txt
# or
uv pip install -r pyproject.toml
# Start the server
uvicorn app:app --host 0.0.0.0 --port 8000
```
### Docker Deployment
```bash
# Build the image
docker build -t agi-api .
# Run the container
docker run -p 8000:8000 agi-api
```
## π API Documentation
Once the server is running, access the interactive documentation:
- **Swagger UI**: http://localhost:8000/docs
- **ReDoc**: http://localhost:8000/redoc
- **OpenAPI JSON**: http://localhost:8000/openapi.json
## π§ Usage Examples
### Basic Chat Completion
```python
import requests
response = requests.post(
"http://localhost:8000/v1/chat/completions",
json={
"messages": [
{"role": "user", "content": "What is the capital of France?"}
],
"max_tokens": 100,
"temperature": 0.7
}
)
print(response.json())
```
### Web-Augmented Chat
```python
response = requests.post(
"http://localhost:8000/v1/web-chat/completions",
json={
"messages": [
{"role": "user", "content": "What are the latest AI developments?"}
],
"max_tokens": 512,
"max_search_results": 5
}
)
result = response.json()
print(result["choices"][0]["message"]["content"])
print(f"Sources: {result['web_search']['sources']}")
```
### Switch Models
```python
# Switch to coding model
response = requests.post(
"http://localhost:8000/switch-model",
json={"model_name": "deepseek-coder"}
)
print(response.json())
# Output: {"message": "Switched to model: deepseek-coder (from cache)", "model": "deepseek-coder"}
```
### Check Cache Status
```python
response = requests.get("http://localhost:8000/cache/info")
cache_info = response.json()
print(f"Cached models: {cache_info['current_size']}/{cache_info['max_size']}")
for model in cache_info['cached_models']:
print(f" - {model['name']} on port {model['port']}")
```
## ποΈ Architecture
### Model Caching System
The API uses an intelligent LRU (Least Recently Used) cache to manage models in memory:
```
βββββββββββββββββββββββββββββββββββββββββββββββββββ
β Request: Switch to Model A β
βββββββββββββββββββββββββββββββββββββββββββββββββββ€
β 1. Check if A is current β Skip β
β 2. Check cache for A β
β ββ Cache Hit β Instant switch (< 1s) β
β ββ Cache Miss β Load model (~2-3 min) β
β 3. If cache full β Evict LRU model β
β 4. Add A to cache β
βββββββββββββββββββββββββββββββββββββββββββββββββββ
```
**Benefits:**
- First load: ~2-3 minutes (model download + initialization)
- Subsequent switches: < 1 second (from cache)
- Automatic memory management with LRU eviction
- Each model runs on a separate port (8080, 8081, etc.)
### Multi-Port Architecture
```
ββββββββββββββββββββββββ
β FastAPI Server β
β (Port 8000) β
ββββββββββββ¬ββββββββββββ
β
ββββββββ΄βββββββββββββββββββββ
β β
βββββΌβββββββββββββ ββββββββββββΌβββββ
β llama-server β β llama-server β
β Model A:8080 β β Model B:8081 β
ββββββββββββββββββ βββββββββββββββββ
```
## βοΈ Configuration
### Environment Variables
```bash
# Maximum cached models (default: 2)
MAX_CACHED_MODELS=2
# Base port for llama-server instances (default: 8080)
BASE_PORT=8080
# Default model on startup
DEFAULT_MODEL=deepseek-chat
```
### Model Configuration
Edit `AVAILABLE_MODELS` in `app.py` to add custom models:
```python
AVAILABLE_MODELS = {
"my-model": "username/model-name-GGUF:model-file.Q4_K_M.gguf"
}
```
## π API Endpoints
### Status & Models
- `GET /` - API status and current model
- `GET /models` - List available models
- `GET /cache/info` - Cache statistics and cached models
### Model Management
- `POST /switch-model` - Switch active model (with caching)
### Chat Completions
- `POST /v1/chat/completions` - Standard chat completions (OpenAI-compatible)
- `POST /v1/web-chat/completions` - Web-augmented chat with search
### Documentation
- `GET /docs` - Swagger UI interactive documentation
- `GET /redoc` - ReDoc alternative documentation
- `GET /openapi.json` - OpenAPI 3.0 specification export
## π§ͺ Testing
```bash
# Test basic chat
curl -X POST http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"messages": [{"role": "user", "content": "Hello!"}],
"max_tokens": 50
}'
# Check cache status
curl http://localhost:8000/cache/info
# Switch models
curl -X POST http://localhost:8000/switch-model \
-H "Content-Type: application/json" \
-d '{"model_name": "deepseek-coder"}'
```
## π Web Search Integration
The web-augmented chat endpoint automatically:
1. Extracts the user's query from the last message
2. Performs a DuckDuckGo web search
3. Injects search results into the LLM context
4. Returns response with source citations
**Use cases:**
- Current events and news
- Recent developments beyond training data
- Fact-checking with live web data
- Research with source attribution
## π Performance Tips
1. **Cache Size**: Increase `MAX_CACHED_MODELS` if you have sufficient RAM (each model ~4-5GB)
2. **CPU Threads**: Adjust `-t` parameter in `start_llama_server()` based on your CPU cores
3. **Batch Size**: Modify `-b` parameter for throughput vs. latency tradeoff
4. **GPU Acceleration**: Set `-ngl` > 0 if you have a GPU (requires llama.cpp with GPU support)
## π οΈ Development
### Project Structure
```
AGI/
βββ app.py # Main FastAPI application
βββ client_multi_model.py # Example client
βββ Dockerfile # Docker configuration
βββ pyproject.toml # Python dependencies
βββ README.md # This file
```
### Adding New Models
1. Find a GGUF model on HuggingFace
2. Add to `AVAILABLE_MODELS` dict
3. Restart the server
4. Switch to your new model via API
## π License
Apache 2.0 - See LICENSE file for details
## π€ Contributing
Contributions welcome! Please feel free to submit a Pull Request.
## π Troubleshooting
### Model fails to load
- Ensure `llama-server` is in your PATH
- Check available disk space for model downloads
- Verify internet connectivity for first-time model downloads
### Out of memory errors
- Reduce `MAX_CACHED_MODELS` to 1
- Use smaller quantized models (Q4_K_M instead of Q8)
- Increase system swap space
### Port conflicts
- Change `BASE_PORT` if 8080+ are in use
- Check for other llama-server instances: `ps aux | grep llama`
## π Additional Resources
- [FastAPI Documentation](https://fastapi.tiangolo.com/)
- [llama.cpp GitHub](https://github.com/ggerganov/llama.cpp)
- [Hugging Face Models](https://huggingface.co/models?library=gguf)
- [OpenAI API Reference](https://platform.openai.com/docs/api-reference)
---
Built with β€οΈ using FastAPI and llama.cpp
|