Spaces:
Sleeping
Sleeping
fix misalignment diplay issue
Browse files
app.py
CHANGED
|
@@ -33,36 +33,39 @@ def calculate_cer(reference, hypothesis):
|
|
| 33 |
def calculate_sentence_metrics(reference, hypothesis):
|
| 34 |
"""
|
| 35 |
Calculate WER and CER for each sentence and overall statistics.
|
|
|
|
| 36 |
"""
|
| 37 |
try:
|
| 38 |
reference_sentences = split_into_sentences(reference)
|
| 39 |
hypothesis_sentences = split_into_sentences(hypothesis)
|
| 40 |
|
| 41 |
-
if len(reference_sentences) != len(hypothesis_sentences):
|
| 42 |
-
raise ValueError("Reference and hypothesis must contain the same number of sentences")
|
| 43 |
-
|
| 44 |
sentence_wers = []
|
| 45 |
sentence_cers = []
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
wer = jiwer.wer(ref, hyp)
|
| 48 |
cer = jiwer.cer(ref, hyp)
|
| 49 |
sentence_wers.append(wer)
|
| 50 |
sentence_cers.append(cer)
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
|
| 67 |
return {
|
| 68 |
"sentence_wers": sentence_wers,
|
|
@@ -74,19 +77,26 @@ def calculate_sentence_metrics(reference, hypothesis):
|
|
| 74 |
}
|
| 75 |
except Exception as e:
|
| 76 |
raise e
|
|
|
|
| 77 |
|
| 78 |
def identify_misaligned_sentences(reference_text, hypothesis_text):
|
| 79 |
"""
|
| 80 |
Identify sentences that don't match between reference and hypothesis.
|
|
|
|
| 81 |
Returns a dictionary with misaligned sentence pairs, their indices, and misalignment details.
|
| 82 |
"""
|
| 83 |
reference_sentences = split_into_sentences(reference_text)
|
| 84 |
hypothesis_sentences = split_into_sentences(hypothesis_text)
|
| 85 |
|
| 86 |
misaligned = []
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
if ref != hyp:
|
| 89 |
-
print(f"Debug: Found misalignment in sentence {i+1}")
|
| 90 |
# Find the first position where the sentences diverge
|
| 91 |
min_len = min(len(ref), len(hyp))
|
| 92 |
misalignment_start = 0
|
|
@@ -106,7 +116,29 @@ def identify_misaligned_sentences(reference_text, hypothesis_text):
|
|
| 106 |
"context_ref": context_ref,
|
| 107 |
"context_hyp": context_hyp
|
| 108 |
})
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
return misaligned
|
| 111 |
|
| 112 |
def format_sentence_metrics(sentence_wers, sentence_cers, average_wer, average_cer, std_dev_wer, std_dev_cer, misaligned_sentences):
|
|
@@ -130,8 +162,8 @@ def format_sentence_metrics(sentence_wers, sentence_cers, average_wer, average_c
|
|
| 130 |
md += "\n### Misaligned Sentences\n\n"
|
| 131 |
for misaligned in misaligned_sentences:
|
| 132 |
md += f"#### Sentence {misaligned['index']}\n"
|
| 133 |
-
md += f"* Reference: {misaligned['
|
| 134 |
-
md += f"* Hypothesis: {misaligned['
|
| 135 |
md += f"* Misalignment starts at position: {misaligned['misalignment_start']}\n\n"
|
| 136 |
else:
|
| 137 |
md += "\n### Misaligned Sentences\n\n"
|
|
@@ -139,7 +171,6 @@ def format_sentence_metrics(sentence_wers, sentence_cers, average_wer, average_c
|
|
| 139 |
|
| 140 |
return md
|
| 141 |
|
| 142 |
-
|
| 143 |
@spaces.GPU()
|
| 144 |
def process_files(reference_file, hypothesis_file):
|
| 145 |
try:
|
|
@@ -168,6 +199,41 @@ def process_files(reference_file, hypothesis_file):
|
|
| 168 |
except Exception as e:
|
| 169 |
return {"error": str(e)}
|
| 170 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
def main():
|
| 172 |
with gr.Blocks() as demo:
|
| 173 |
gr.Markdown("# ASR Metrics")
|
|
@@ -193,10 +259,10 @@ def main():
|
|
| 193 |
|
| 194 |
if ref_file:
|
| 195 |
with open(ref_file.name, 'r') as f:
|
| 196 |
-
ref_text = f.read()[:200]
|
| 197 |
if hyp_file:
|
| 198 |
with open(hyp_file.name, 'r') as f:
|
| 199 |
-
hyp_text = f.read()[:200]
|
| 200 |
|
| 201 |
return ref_text, hyp_text
|
| 202 |
|
|
@@ -211,36 +277,6 @@ def main():
|
|
| 211 |
outputs=[reference_preview, hypothesis_preview]
|
| 212 |
)
|
| 213 |
|
| 214 |
-
def process_and_display(ref_file, hyp_file):
|
| 215 |
-
result = process_files(ref_file, hyp_file)
|
| 216 |
-
if "error" in result:
|
| 217 |
-
error_msg = result["error"]
|
| 218 |
-
return {"error": error_msg}, "", "", {"error": error_msg}
|
| 219 |
-
|
| 220 |
-
metrics = {
|
| 221 |
-
"Overall WER": result["Overall WER"],
|
| 222 |
-
"Overall CER": result["Overall CER"]
|
| 223 |
-
}
|
| 224 |
-
|
| 225 |
-
metrics_md = format_sentence_metrics(
|
| 226 |
-
result["Sentence WERs"],
|
| 227 |
-
result["Sentence CERs"],
|
| 228 |
-
result["Average WER"],
|
| 229 |
-
result["Average CER"],
|
| 230 |
-
result["Standard Deviation WER"],
|
| 231 |
-
result["Standard Deviation CER"],
|
| 232 |
-
result["Misaligned Sentences"]
|
| 233 |
-
)
|
| 234 |
-
|
| 235 |
-
misaligned_md = "### Misaligned Sentences\n\n"
|
| 236 |
-
for misaligned in result["Misaligned Sentences"]:
|
| 237 |
-
misaligned_md += f"#### Sentence {misaligned['index']}\n"
|
| 238 |
-
misaligned_md += f"* Reference: {misaligned['context_ref']}\n"
|
| 239 |
-
misaligned_md += f"* Hypothesis: {misaligned['context_hyp']}\n"
|
| 240 |
-
misaligned_md += f"* Misalignment starts at position: {misaligned['misalignment_start']}\n\n"
|
| 241 |
-
|
| 242 |
-
return metrics, metrics_md, misaligned_md
|
| 243 |
-
|
| 244 |
compute_button.click(
|
| 245 |
fn=process_and_display,
|
| 246 |
inputs=[reference_file, hypothesis_file],
|
|
|
|
| 33 |
def calculate_sentence_metrics(reference, hypothesis):
|
| 34 |
"""
|
| 35 |
Calculate WER and CER for each sentence and overall statistics.
|
| 36 |
+
Handles cases where the number of sentences differ.
|
| 37 |
"""
|
| 38 |
try:
|
| 39 |
reference_sentences = split_into_sentences(reference)
|
| 40 |
hypothesis_sentences = split_into_sentences(hypothesis)
|
| 41 |
|
|
|
|
|
|
|
|
|
|
| 42 |
sentence_wers = []
|
| 43 |
sentence_cers = []
|
| 44 |
+
min_length = min(len(reference_sentences), len(hypothesis_sentences))
|
| 45 |
+
|
| 46 |
+
for i in range(min_length):
|
| 47 |
+
ref = reference_sentences[i]
|
| 48 |
+
hyp = hypothesis_sentences[i]
|
| 49 |
+
|
| 50 |
wer = jiwer.wer(ref, hyp)
|
| 51 |
cer = jiwer.cer(ref, hyp)
|
| 52 |
sentence_wers.append(wer)
|
| 53 |
sentence_cers.append(cer)
|
| 54 |
|
| 55 |
+
# Calculate overall statistics
|
| 56 |
+
if sentence_wers:
|
| 57 |
+
average_wer = np.mean(sentence_wers)
|
| 58 |
+
std_dev_wer = np.std(sentence_wers)
|
| 59 |
+
else:
|
| 60 |
+
average_wer = 0.0
|
| 61 |
+
std_dev_wer = 0.0
|
| 62 |
+
|
| 63 |
+
if sentence_cers:
|
| 64 |
+
average_cer = np.mean(sentence_cers)
|
| 65 |
+
std_dev_cer = np.std(sentence_cers)
|
| 66 |
+
else:
|
| 67 |
+
average_cer = 0.0
|
| 68 |
+
std_dev_cer = 0.0
|
| 69 |
|
| 70 |
return {
|
| 71 |
"sentence_wers": sentence_wers,
|
|
|
|
| 77 |
}
|
| 78 |
except Exception as e:
|
| 79 |
raise e
|
| 80 |
+
|
| 81 |
|
| 82 |
def identify_misaligned_sentences(reference_text, hypothesis_text):
|
| 83 |
"""
|
| 84 |
Identify sentences that don't match between reference and hypothesis.
|
| 85 |
+
Handles cases where the number of sentences differ.
|
| 86 |
Returns a dictionary with misaligned sentence pairs, their indices, and misalignment details.
|
| 87 |
"""
|
| 88 |
reference_sentences = split_into_sentences(reference_text)
|
| 89 |
hypothesis_sentences = split_into_sentences(hypothesis_text)
|
| 90 |
|
| 91 |
misaligned = []
|
| 92 |
+
min_length = min(len(reference_sentences), len(hypothesis_sentences))
|
| 93 |
+
|
| 94 |
+
# Compare sentences up to the minimum length
|
| 95 |
+
for i in range(min_length):
|
| 96 |
+
ref = reference_sentences[i]
|
| 97 |
+
hyp = hypothesis_sentences[i]
|
| 98 |
+
|
| 99 |
if ref != hyp:
|
|
|
|
| 100 |
# Find the first position where the sentences diverge
|
| 101 |
min_len = min(len(ref), len(hyp))
|
| 102 |
misalignment_start = 0
|
|
|
|
| 116 |
"context_ref": context_ref,
|
| 117 |
"context_hyp": context_hyp
|
| 118 |
})
|
| 119 |
+
|
| 120 |
+
# Note any extra sentences as misaligned
|
| 121 |
+
if len(reference_sentences) > len(hypothesis_sentences):
|
| 122 |
+
for i in range(min_length, len(reference_sentences)):
|
| 123 |
+
misaligned.append({
|
| 124 |
+
"index": i+1,
|
| 125 |
+
"reference": reference_sentences[i],
|
| 126 |
+
"hypothesis": "No corresponding sentence",
|
| 127 |
+
"misalignment_start": 0,
|
| 128 |
+
"context_ref": reference_sentences[i],
|
| 129 |
+
"context_hyp": "No corresponding sentence"
|
| 130 |
+
})
|
| 131 |
+
elif len(hypothesis_sentences) > len(reference_sentences):
|
| 132 |
+
for i in range(min_length, len(hypothesis_sentences)):
|
| 133 |
+
misaligned.append({
|
| 134 |
+
"index": i+1,
|
| 135 |
+
"reference": "No corresponding sentence",
|
| 136 |
+
"hypothesis": hypothesis_sentences[i],
|
| 137 |
+
"misalignment_start": 0,
|
| 138 |
+
"context_ref": "No corresponding sentence",
|
| 139 |
+
"context_hyp": hypothesis_sentences[i]
|
| 140 |
+
})
|
| 141 |
+
|
| 142 |
return misaligned
|
| 143 |
|
| 144 |
def format_sentence_metrics(sentence_wers, sentence_cers, average_wer, average_cer, std_dev_wer, std_dev_cer, misaligned_sentences):
|
|
|
|
| 162 |
md += "\n### Misaligned Sentences\n\n"
|
| 163 |
for misaligned in misaligned_sentences:
|
| 164 |
md += f"#### Sentence {misaligned['index']}\n"
|
| 165 |
+
md += f"* Reference: {misaligned['context_ref']}\n"
|
| 166 |
+
md += f"* Hypothesis: {misaligned['context_hyp']}\n"
|
| 167 |
md += f"* Misalignment starts at position: {misaligned['misalignment_start']}\n\n"
|
| 168 |
else:
|
| 169 |
md += "\n### Misaligned Sentences\n\n"
|
|
|
|
| 171 |
|
| 172 |
return md
|
| 173 |
|
|
|
|
| 174 |
@spaces.GPU()
|
| 175 |
def process_files(reference_file, hypothesis_file):
|
| 176 |
try:
|
|
|
|
| 199 |
except Exception as e:
|
| 200 |
return {"error": str(e)}
|
| 201 |
|
| 202 |
+
def process_and_display(ref_file, hyp_file):
|
| 203 |
+
result = process_files(ref_file, hyp_file)
|
| 204 |
+
|
| 205 |
+
if "error" in result:
|
| 206 |
+
error_msg = result["error"]
|
| 207 |
+
return {"error": error_msg}, "", ""
|
| 208 |
+
|
| 209 |
+
metrics = {
|
| 210 |
+
"Overall WER": result["Overall WER"],
|
| 211 |
+
"Overall CER": result["Overall CER"]
|
| 212 |
+
}
|
| 213 |
+
|
| 214 |
+
metrics_md = format_sentence_metrics(
|
| 215 |
+
result["Sentence WERs"],
|
| 216 |
+
result["Sentence CERs"],
|
| 217 |
+
result["Average WER"],
|
| 218 |
+
result["Average CER"],
|
| 219 |
+
result["Standard Deviation WER"],
|
| 220 |
+
result["Standard Deviation CER"],
|
| 221 |
+
result["Misaligned Sentences"]
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
misaligned_md = "### Misaligned Sentences\n\n"
|
| 225 |
+
if result["Misaligned Sentences"]:
|
| 226 |
+
for misaligned in result["Misaligned Sentences"]:
|
| 227 |
+
misaligned_md += f"#### Sentence {misaligned['index']}\n"
|
| 228 |
+
misaligned_md += f"* Reference: {misaligned['context_ref']}\n"
|
| 229 |
+
misaligned_md += f"* Hypothesis: {misaligned['context_hyp']}\n"
|
| 230 |
+
misaligned_md += f"* Misalignment starts at position: {misaligned['misalignment_start']}\n\n"
|
| 231 |
+
else:
|
| 232 |
+
misaligned_md += "* No misaligned sentences found."
|
| 233 |
+
|
| 234 |
+
return metrics, metrics_md, misaligned_md
|
| 235 |
+
|
| 236 |
+
|
| 237 |
def main():
|
| 238 |
with gr.Blocks() as demo:
|
| 239 |
gr.Markdown("# ASR Metrics")
|
|
|
|
| 259 |
|
| 260 |
if ref_file:
|
| 261 |
with open(ref_file.name, 'r') as f:
|
| 262 |
+
ref_text = f.read()[:200]
|
| 263 |
if hyp_file:
|
| 264 |
with open(hyp_file.name, 'r') as f:
|
| 265 |
+
hyp_text = f.read()[:200]
|
| 266 |
|
| 267 |
return ref_text, hyp_text
|
| 268 |
|
|
|
|
| 277 |
outputs=[reference_preview, hypothesis_preview]
|
| 278 |
)
|
| 279 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
compute_button.click(
|
| 281 |
fn=process_and_display,
|
| 282 |
inputs=[reference_file, hypothesis_file],
|