Spaces:
Sleeping
Sleeping
add nltk
Browse files
app.py
CHANGED
|
@@ -1,7 +1,11 @@
|
|
| 1 |
import jiwer
|
| 2 |
-
import spaces
|
| 3 |
import numpy as np
|
| 4 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
@spaces.GPU()
|
| 7 |
def calculate_wer(reference, hypothesis):
|
|
@@ -24,33 +28,55 @@ def calculate_sentence_wer(reference, hypothesis):
|
|
| 24 |
"""
|
| 25 |
Calculate WER for each sentence and overall statistics.
|
| 26 |
"""
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
return {
|
| 40 |
"sentence_wers": [],
|
| 41 |
"average_wer": 0.0,
|
| 42 |
-
"std_dev": 0.0
|
|
|
|
| 43 |
}
|
| 44 |
|
| 45 |
-
average_wer = np.mean(sentence_wers)
|
| 46 |
-
std_dev = np.std(sentence_wers)
|
| 47 |
-
|
| 48 |
-
return {
|
| 49 |
-
"sentence_wers": sentence_wers,
|
| 50 |
-
"average_wer": average_wer,
|
| 51 |
-
"std_dev": std_dev
|
| 52 |
-
}
|
| 53 |
-
|
| 54 |
@spaces.GPU()
|
| 55 |
def process_files(reference_file, hypothesis_file):
|
| 56 |
try:
|
|
@@ -60,6 +86,11 @@ def process_files(reference_file, hypothesis_file):
|
|
| 60 |
with open(hypothesis_file.name, 'r') as f:
|
| 61 |
hypothesis_text = f.read()
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
wer_value = calculate_wer(reference_text, hypothesis_text)
|
| 64 |
cer_value = calculate_cer(reference_text, hypothesis_text)
|
| 65 |
sentence_wer_stats = calculate_sentence_wer(reference_text, hypothesis_text)
|
|
@@ -69,21 +100,39 @@ def process_files(reference_file, hypothesis_file):
|
|
| 69 |
"CER": cer_value,
|
| 70 |
"Sentence WERs": sentence_wer_stats["sentence_wers"],
|
| 71 |
"Average WER": sentence_wer_stats["average_wer"],
|
| 72 |
-
"Standard Deviation": sentence_wer_stats["std_dev"]
|
|
|
|
|
|
|
| 73 |
}
|
| 74 |
except Exception as e:
|
| 75 |
-
return {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
-
def format_sentence_wer_stats(sentence_wers, average_wer, std_dev):
|
| 78 |
if not sentence_wers:
|
| 79 |
-
|
|
|
|
| 80 |
|
| 81 |
-
md
|
| 82 |
md += f"* Average WER: {average_wer:.2f}\n"
|
| 83 |
md += f"* Standard Deviation: {std_dev:.2f}\n\n"
|
| 84 |
md += "### WER for Each Sentence\n\n"
|
| 85 |
for i, wer in enumerate(sentence_wers):
|
| 86 |
md += f"* Sentence {i+1}: {wer:.2f}\n"
|
|
|
|
| 87 |
return md
|
| 88 |
|
| 89 |
def main():
|
|
@@ -130,18 +179,24 @@ def main():
|
|
| 130 |
|
| 131 |
def process_and_display(ref_file, hyp_file):
|
| 132 |
result = process_files(ref_file, hyp_file)
|
| 133 |
-
if "error" in result:
|
| 134 |
-
return {}, {}, "Error: " + result["error"]
|
| 135 |
|
| 136 |
metrics = {
|
| 137 |
"WER": result["WER"],
|
| 138 |
"CER": result["CER"]
|
| 139 |
}
|
| 140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
wer_stats_md = format_sentence_wer_stats(
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
|
|
|
|
|
|
| 145 |
)
|
| 146 |
|
| 147 |
return metrics, wer_stats_md
|
|
|
|
| 1 |
import jiwer
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import gradio as gr
|
| 4 |
+
import nltk
|
| 5 |
+
from nltk.tokenize import sent_tokenize
|
| 6 |
+
|
| 7 |
+
# Ensure NLTK data is downloaded
|
| 8 |
+
nltk.download('punkt')
|
| 9 |
|
| 10 |
@spaces.GPU()
|
| 11 |
def calculate_wer(reference, hypothesis):
|
|
|
|
| 28 |
"""
|
| 29 |
Calculate WER for each sentence and overall statistics.
|
| 30 |
"""
|
| 31 |
+
try:
|
| 32 |
+
reference_sentences = sent_tokenize(reference)
|
| 33 |
+
hypothesis_sentences = sent_tokenize(hypothesis)
|
| 34 |
+
|
| 35 |
+
# Get minimum number of sentences
|
| 36 |
+
min_sentences = min(len(reference_sentences), len(hypothesis_sentences))
|
| 37 |
+
|
| 38 |
+
# Trim to the same number of sentences
|
| 39 |
+
reference_sentences = reference_sentences[:min_sentences]
|
| 40 |
+
hypothesis_sentences = hypothesis_sentences[:min_sentences]
|
| 41 |
+
|
| 42 |
+
sentence_wers = []
|
| 43 |
+
for ref, hyp in zip(reference_sentences, hypothesis_sentences):
|
| 44 |
+
sentence_wer = jiwer.wer(ref, hyp)
|
| 45 |
+
sentence_wers.append(sentence_wer)
|
| 46 |
+
|
| 47 |
+
if not sentence_wers:
|
| 48 |
+
return {
|
| 49 |
+
"sentence_wers": [],
|
| 50 |
+
"average_wer": 0.0,
|
| 51 |
+
"std_dev": 0.0,
|
| 52 |
+
"warning": "No sentences to compare"
|
| 53 |
+
}
|
| 54 |
|
| 55 |
+
average_wer = np.mean(sentence_wers)
|
| 56 |
+
std_dev = np.std(sentence_wers)
|
| 57 |
|
| 58 |
+
# Check if there were extra sentences
|
| 59 |
+
if len(reference_sentences) != len(hypothesis_sentences):
|
| 60 |
+
warning = f"Reference has {len(reference_sentences)} sentences, " \
|
| 61 |
+
f"hypothesis has {len(hypothesis_sentences)} sentences. " \
|
| 62 |
+
f"Only compared the first {min_sentences} sentences."
|
| 63 |
+
else:
|
| 64 |
+
warning = None
|
| 65 |
|
| 66 |
+
return {
|
| 67 |
+
"sentence_wers": sentence_wers,
|
| 68 |
+
"average_wer": average_wer,
|
| 69 |
+
"std_dev": std_dev,
|
| 70 |
+
"warning": warning
|
| 71 |
+
}
|
| 72 |
+
except Exception as e:
|
| 73 |
return {
|
| 74 |
"sentence_wers": [],
|
| 75 |
"average_wer": 0.0,
|
| 76 |
+
"std_dev": 0.0,
|
| 77 |
+
"error": str(e)
|
| 78 |
}
|
| 79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
@spaces.GPU()
|
| 81 |
def process_files(reference_file, hypothesis_file):
|
| 82 |
try:
|
|
|
|
| 86 |
with open(hypothesis_file.name, 'r') as f:
|
| 87 |
hypothesis_text = f.read()
|
| 88 |
|
| 89 |
+
if not reference_text or not hypothesis_text:
|
| 90 |
+
return {
|
| 91 |
+
"error": "Both reference and hypothesis files must contain text"
|
| 92 |
+
}
|
| 93 |
+
|
| 94 |
wer_value = calculate_wer(reference_text, hypothesis_text)
|
| 95 |
cer_value = calculate_cer(reference_text, hypothesis_text)
|
| 96 |
sentence_wer_stats = calculate_sentence_wer(reference_text, hypothesis_text)
|
|
|
|
| 100 |
"CER": cer_value,
|
| 101 |
"Sentence WERs": sentence_wer_stats["sentence_wers"],
|
| 102 |
"Average WER": sentence_wer_stats["average_wer"],
|
| 103 |
+
"Standard Deviation": sentence_wer_stats["std_dev"],
|
| 104 |
+
"Warning": sentence_wer_stats.get("warning"),
|
| 105 |
+
"Error": sentence_wer_stats.get("error")
|
| 106 |
}
|
| 107 |
except Exception as e:
|
| 108 |
+
return {
|
| 109 |
+
"WER": 0.0,
|
| 110 |
+
"CER": 0.0,
|
| 111 |
+
"Sentence WERs": [],
|
| 112 |
+
"Average WER": 0.0,
|
| 113 |
+
"Standard Deviation": 0.0,
|
| 114 |
+
"Error": str(e)
|
| 115 |
+
}
|
| 116 |
+
|
| 117 |
+
def format_sentence_wer_stats(sentence_wers, average_wer, std_dev, warning, error):
|
| 118 |
+
md = ""
|
| 119 |
+
|
| 120 |
+
if error:
|
| 121 |
+
md += f"### Error\n{error}\n\n"
|
| 122 |
+
elif warning:
|
| 123 |
+
md += f"### Warning\n{warning}\n\n"
|
| 124 |
|
|
|
|
| 125 |
if not sentence_wers:
|
| 126 |
+
md += "No sentences to compare"
|
| 127 |
+
return md
|
| 128 |
|
| 129 |
+
md += "### Sentence-level WER Analysis\n\n"
|
| 130 |
md += f"* Average WER: {average_wer:.2f}\n"
|
| 131 |
md += f"* Standard Deviation: {std_dev:.2f}\n\n"
|
| 132 |
md += "### WER for Each Sentence\n\n"
|
| 133 |
for i, wer in enumerate(sentence_wers):
|
| 134 |
md += f"* Sentence {i+1}: {wer:.2f}\n"
|
| 135 |
+
|
| 136 |
return md
|
| 137 |
|
| 138 |
def main():
|
|
|
|
| 179 |
|
| 180 |
def process_and_display(ref_file, hyp_file):
|
| 181 |
result = process_files(ref_file, hyp_file)
|
|
|
|
|
|
|
| 182 |
|
| 183 |
metrics = {
|
| 184 |
"WER": result["WER"],
|
| 185 |
"CER": result["CER"]
|
| 186 |
}
|
| 187 |
|
| 188 |
+
error = result.get("Error")
|
| 189 |
+
warning = result.get("Warning")
|
| 190 |
+
sentence_wers = result.get("Sentence WERs", [])
|
| 191 |
+
average_wer = result.get("Average WER", 0.0)
|
| 192 |
+
std_dev = result.get("Standard Deviation", 0.0)
|
| 193 |
+
|
| 194 |
wer_stats_md = format_sentence_wer_stats(
|
| 195 |
+
sentence_wers,
|
| 196 |
+
average_wer,
|
| 197 |
+
std_dev,
|
| 198 |
+
warning,
|
| 199 |
+
error
|
| 200 |
)
|
| 201 |
|
| 202 |
return metrics, wer_stats_md
|