Spaces:
Sleeping
Sleeping
add wer fn
Browse files
app.py
CHANGED
|
@@ -1,78 +1,55 @@
|
|
|
|
|
| 1 |
import spaces
|
| 2 |
-
import gradio as gr
|
| 3 |
import numpy as np
|
|
|
|
| 4 |
|
| 5 |
@spaces.GPU()
|
| 6 |
-
def
|
| 7 |
"""
|
| 8 |
-
|
| 9 |
"""
|
| 10 |
-
|
| 11 |
-
hypothesis = hypothesis.split()
|
| 12 |
-
|
| 13 |
-
mismatched = []
|
| 14 |
-
for ref, hyp in zip(reference, hypothesis):
|
| 15 |
-
if ref != hyp:
|
| 16 |
-
mismatched.append((ref, hyp))
|
| 17 |
-
|
| 18 |
-
return mismatched
|
| 19 |
-
|
| 20 |
-
@spaces.GPU()
|
| 21 |
-
def calculate_wer(reference, hypothesis):
|
| 22 |
-
reference_words = reference.split()
|
| 23 |
-
hypothesis_words = hypothesis.split()
|
| 24 |
-
|
| 25 |
-
m = len(reference_words)
|
| 26 |
-
n = len(hypothesis_words)
|
| 27 |
-
|
| 28 |
-
# Initialize DP table
|
| 29 |
-
dp = np.zeros((m+1, n+1), dtype=np.int32)
|
| 30 |
-
|
| 31 |
-
# Base cases
|
| 32 |
-
for i in range(m+1):
|
| 33 |
-
dp[i][0] = i
|
| 34 |
-
for j in range(n+1):
|
| 35 |
-
dp[0][j] = j
|
| 36 |
-
|
| 37 |
-
# Fill DP table
|
| 38 |
-
for i in range(1, m+1):
|
| 39 |
-
for j in range(1, n+1):
|
| 40 |
-
cost = 0 if reference_words[i-1] == hypothesis_words[j-1] else 1
|
| 41 |
-
dp[i][j] = min(dp[i-1][j] + 1, # Deletion
|
| 42 |
-
dp[i][j-1] + 1, # Insertion
|
| 43 |
-
dp[i-1][j-1] + cost) # Substitution or no cost
|
| 44 |
-
|
| 45 |
-
wer = dp[m][n] / m
|
| 46 |
return wer
|
| 47 |
|
| 48 |
@spaces.GPU()
|
| 49 |
def calculate_cer(reference, hypothesis):
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
n = len(hypothesis)
|
| 55 |
-
|
| 56 |
-
# Initialize DP table
|
| 57 |
-
dp = np.zeros((m+1, n+1), dtype=np.int32)
|
| 58 |
-
|
| 59 |
-
# Base cases
|
| 60 |
-
for i in range(m+1):
|
| 61 |
-
dp[i][0] = i
|
| 62 |
-
for j in range(n+1):
|
| 63 |
-
dp[0][j] = j
|
| 64 |
-
|
| 65 |
-
# Fill DP table
|
| 66 |
-
for i in range(1, m+1):
|
| 67 |
-
for j in range(1, n+1):
|
| 68 |
-
cost = 0 if reference[i-1] == hypothesis[j-1] else 1
|
| 69 |
-
dp[i][j] = min(dp[i-1][j] + 1, # Deletion
|
| 70 |
-
dp[i][j-1] + 1, # Insertion
|
| 71 |
-
dp[i-1][j-1] + cost) # Substitution or no cost
|
| 72 |
-
|
| 73 |
-
cer = dp[m][n] / m
|
| 74 |
return cer
|
| 75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
@spaces.GPU()
|
| 78 |
def process_files(reference_file, hypothesis_file):
|
|
@@ -85,16 +62,30 @@ def process_files(reference_file, hypothesis_file):
|
|
| 85 |
|
| 86 |
wer_value = calculate_wer(reference_text, hypothesis_text)
|
| 87 |
cer_value = calculate_cer(reference_text, hypothesis_text)
|
| 88 |
-
|
| 89 |
|
| 90 |
return {
|
| 91 |
"WER": wer_value,
|
| 92 |
"CER": cer_value,
|
| 93 |
-
"
|
|
|
|
|
|
|
| 94 |
}
|
| 95 |
except Exception as e:
|
| 96 |
return {"error": str(e)}
|
| 97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
def main():
|
| 99 |
with gr.Blocks() as demo:
|
| 100 |
gr.Markdown("# ASR Metrics Calculator")
|
|
@@ -110,6 +101,7 @@ def main():
|
|
| 110 |
with gr.Row():
|
| 111 |
compute_button = gr.Button("Compute Metrics")
|
| 112 |
results_output = gr.JSON(label="Results")
|
|
|
|
| 113 |
|
| 114 |
# Update previews when files are uploaded
|
| 115 |
def update_previews(ref_file, hyp_file):
|
|
@@ -136,10 +128,28 @@ def main():
|
|
| 136 |
outputs=[reference_preview, hypothesis_preview]
|
| 137 |
)
|
| 138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
compute_button.click(
|
| 140 |
-
fn=
|
| 141 |
inputs=[reference_file, hypothesis_file],
|
| 142 |
-
outputs=results_output
|
| 143 |
)
|
| 144 |
|
| 145 |
demo.launch()
|
|
|
|
| 1 |
+
import jiwer
|
| 2 |
import spaces
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
+
import gradio as gr
|
| 5 |
|
| 6 |
@spaces.GPU()
|
| 7 |
+
def calculate_wer(reference, hypothesis):
|
| 8 |
"""
|
| 9 |
+
Calculate the Word Error Rate (WER) using jiwer.
|
| 10 |
"""
|
| 11 |
+
wer = jiwer.wer(reference, hypothesis)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
return wer
|
| 13 |
|
| 14 |
@spaces.GPU()
|
| 15 |
def calculate_cer(reference, hypothesis):
|
| 16 |
+
"""
|
| 17 |
+
Calculate the Character Error Rate (CER) using jiwer.
|
| 18 |
+
"""
|
| 19 |
+
cer = jiwer.cer(reference, hypothesis)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
return cer
|
| 21 |
|
| 22 |
+
@spaces.GPU()
|
| 23 |
+
def calculate_sentence_wer(reference, hypothesis):
|
| 24 |
+
"""
|
| 25 |
+
Calculate WER for each sentence and overall statistics.
|
| 26 |
+
"""
|
| 27 |
+
reference_sentences = jiwer.split_into_sentences(reference)
|
| 28 |
+
hypothesis_sentences = jiwer.split_into_sentences(hypothesis)
|
| 29 |
+
|
| 30 |
+
if len(reference_sentences) != len(hypothesis_sentences):
|
| 31 |
+
raise ValueError("Reference and hypothesis must contain the same number of sentences")
|
| 32 |
+
|
| 33 |
+
sentence_wers = []
|
| 34 |
+
for ref, hyp in zip(reference_sentences, hypothesis_sentences):
|
| 35 |
+
sentence_wer = jiwer.wer(ref, hyp)
|
| 36 |
+
sentence_wers.append(sentence_wer)
|
| 37 |
+
|
| 38 |
+
if not sentence_wers:
|
| 39 |
+
return {
|
| 40 |
+
"sentence_wers": [],
|
| 41 |
+
"average_wer": 0.0,
|
| 42 |
+
"std_dev": 0.0
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
average_wer = np.mean(sentence_wers)
|
| 46 |
+
std_dev = np.std(sentence_wers)
|
| 47 |
+
|
| 48 |
+
return {
|
| 49 |
+
"sentence_wers": sentence_wers,
|
| 50 |
+
"average_wer": average_wer,
|
| 51 |
+
"std_dev": std_dev
|
| 52 |
+
}
|
| 53 |
|
| 54 |
@spaces.GPU()
|
| 55 |
def process_files(reference_file, hypothesis_file):
|
|
|
|
| 62 |
|
| 63 |
wer_value = calculate_wer(reference_text, hypothesis_text)
|
| 64 |
cer_value = calculate_cer(reference_text, hypothesis_text)
|
| 65 |
+
sentence_wer_stats = calculate_sentence_wer(reference_text, hypothesis_text)
|
| 66 |
|
| 67 |
return {
|
| 68 |
"WER": wer_value,
|
| 69 |
"CER": cer_value,
|
| 70 |
+
"Sentence WERs": sentence_wer_stats["sentence_wers"],
|
| 71 |
+
"Average WER": sentence_wer_stats["average_wer"],
|
| 72 |
+
"Standard Deviation": sentence_wer_stats["std_dev"]
|
| 73 |
}
|
| 74 |
except Exception as e:
|
| 75 |
return {"error": str(e)}
|
| 76 |
|
| 77 |
+
def format_sentence_wer_stats(sentence_wers, average_wer, std_dev):
|
| 78 |
+
if not sentence_wers:
|
| 79 |
+
return "All sentences match perfectly!"
|
| 80 |
+
|
| 81 |
+
md = "### Sentence-level WER Analysis\n\n"
|
| 82 |
+
md += f"* Average WER: {average_wer:.2f}\n"
|
| 83 |
+
md += f"* Standard Deviation: {std_dev:.2f}\n\n"
|
| 84 |
+
md += "### WER for Each Sentence\n\n"
|
| 85 |
+
for i, wer in enumerate(sentence_wers):
|
| 86 |
+
md += f"* Sentence {i+1}: {wer:.2f}\n"
|
| 87 |
+
return md
|
| 88 |
+
|
| 89 |
def main():
|
| 90 |
with gr.Blocks() as demo:
|
| 91 |
gr.Markdown("# ASR Metrics Calculator")
|
|
|
|
| 101 |
with gr.Row():
|
| 102 |
compute_button = gr.Button("Compute Metrics")
|
| 103 |
results_output = gr.JSON(label="Results")
|
| 104 |
+
wer_stats_output = gr.Markdown(label="WER Statistics")
|
| 105 |
|
| 106 |
# Update previews when files are uploaded
|
| 107 |
def update_previews(ref_file, hyp_file):
|
|
|
|
| 128 |
outputs=[reference_preview, hypothesis_preview]
|
| 129 |
)
|
| 130 |
|
| 131 |
+
def process_and_display(ref_file, hyp_file):
|
| 132 |
+
result = process_files(ref_file, hyp_file)
|
| 133 |
+
if "error" in result:
|
| 134 |
+
return {}, {}, "Error: " + result["error"]
|
| 135 |
+
|
| 136 |
+
metrics = {
|
| 137 |
+
"WER": result["WER"],
|
| 138 |
+
"CER": result["CER"]
|
| 139 |
+
}
|
| 140 |
+
|
| 141 |
+
wer_stats_md = format_sentence_wer_stats(
|
| 142 |
+
result["Sentence WERs"],
|
| 143 |
+
result["Average WER"],
|
| 144 |
+
result["Standard Deviation"]
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
return metrics, wer_stats_md
|
| 148 |
+
|
| 149 |
compute_button.click(
|
| 150 |
+
fn=process_and_display,
|
| 151 |
inputs=[reference_file, hypothesis_file],
|
| 152 |
+
outputs=[results_output, wer_stats_output]
|
| 153 |
)
|
| 154 |
|
| 155 |
demo.launch()
|