File size: 12,061 Bytes
1f39ae1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
#!/usr/bin/env python3
"""
Performance comparison script for different training approaches
"""

import time
import torch
import os
import sys
from pathlib import Path

def benchmark_original_training():
    """Benchmark the original training approach"""
    print("=== Benchmarking Original Training ===")
    
    try:
        # Import original training
        from train_morphological import create_model, train_epoch, validate
        from morphological_dataset import MorphologicalDataset, build_vocabulary, collate_fn
        
        # Setup minimal data for benchmarking
        os.makedirs("benchmark_data", exist_ok=True)
        
        with open("benchmark_data/test.src", "w") as f:
            f.write("hello world\n" * 100)
        
        with open("benchmark_data/test.tgt", "w") as f:
            f.write("hola mundo\n" * 100)
        
        # Build vocabulary
        src_vocab = build_vocabulary(["benchmark_data/test.src"])
        tgt_vocab = build_vocabulary(["benchmark_data/test.tgt"])
        
        # Create dataset
        dataset = MorphologicalDataset("benchmark_data/test.src", "benchmark_data/test.tgt", 
                                     src_vocab, tgt_vocab, max_length=50)
        
        # Create dataloader
        from torch.utils.data import DataLoader
        dataloader = DataLoader(
            dataset, 
            batch_size=400, 
            shuffle=True, 
            collate_fn=lambda batch: collate_fn(batch, src_vocab, tgt_vocab, 50),
            num_workers=4
        )
        
        # Create model
        config = {
            'embed_dim': 256,
            'nb_heads': 4,
            'src_hid_size': 1024,
            'src_nb_layers': 4,
            'trg_hid_size': 1024,
            'trg_nb_layers': 4,
            'dropout_p': 0.1,
            'tie_trg_embed': True,
            'label_smooth': 0.1,
        }
        
        model = create_model(config, src_vocab, tgt_vocab)
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        model = model.to(device)
        
        # Create optimizer
        optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
        
        # Benchmark training
        start_time = time.time()
        
        # Run a few epochs for benchmarking
        for epoch in range(3):
            train_loss, _ = train_epoch(
                model, dataloader, optimizer, None, device, epoch, config
            )
        
        end_time = time.time()
        total_time = end_time - start_time
        
        print(f"Original training: {total_time:.2f}s for 3 epochs")
        
        # Cleanup
        import shutil
        shutil.rmtree("benchmark_data")
        
        return total_time
        
    except Exception as e:
        print(f"Original training benchmark failed: {e}")
        return None

def benchmark_optimized_training():
    """Benchmark the optimized training approach"""
    print("\n=== Benchmarking Optimized Training ===")
    
    try:
        # Import optimized training
        from train_morphological_fast import create_optimized_model, train_epoch_ultra_fast, validate_fast
        from morphological_dataset import MorphologicalDataset, build_vocabulary, collate_fn
        
        # Setup minimal data for benchmarking
        os.makedirs("benchmark_data", exist_ok=True)
        
        with open("benchmark_data/test.src", "w") as f:
            f.write("hello world\n" * 100)
        
        with open("benchmark_data/test.tgt", "w") as f:
            f.write("hola mundo\n" * 100)
        
        # Build vocabulary
        src_vocab = build_vocabulary(["benchmark_data/test.src"])
        tgt_vocab = build_vocabulary(["benchmark_data/test.tgt"])
        
        # Create dataset
        dataset = MorphologicalDataset("benchmark_data/test.src", "benchmark_data/test.tgt", 
                                     src_vocab, tgt_vocab, max_length=50)
        
        # Create dataloader
        from torch.utils.data import DataLoader
        dataloader = DataLoader(
            dataset, 
            batch_size=800, 
            shuffle=True, 
            collate_fn=lambda batch: collate_fn(batch, src_vocab, tgt_vocab, 50),
            num_workers=8,
            pin_memory=True,
            persistent_workers=True,
            prefetch_factor=4,
            drop_last=True
        )
        
        # Create model
        config = {
            'embed_dim': 256,
            'nb_heads': 4,
            'src_hid_size': 1024,
            'src_nb_layers': 4,
            'trg_hid_size': 1024,
            'trg_nb_layers': 4,
            'dropout_p': 0.1,
            'tie_trg_embed': True,
            'label_smooth': 0.1,
            'use_amp': True,
            'gradient_accumulation_steps': 1,
        }
        
        model = create_optimized_model(config, src_vocab, tgt_vocab)
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        model = model.to(device)
        
        # Create optimizer
        optimizer = torch.optim.AdamW(model.parameters(), lr=0.001, foreach=True)
        
        # Create scaler
        from torch.cuda.amp import GradScaler
        scaler = GradScaler(enabled=True)
        
        # Benchmark training
        start_time = time.time()
        
        # Run a few epochs for benchmarking
        for epoch in range(3):
            train_loss = train_epoch_ultra_fast(
                model, dataloader, optimizer, device, epoch, config, scaler
            )
        
        end_time = time.time()
        total_time = end_time - start_time
        
        print(f"Optimized training: {total_time:.2f}s for 3 epochs")
        
        # Cleanup
        import shutil
        shutil.rmtree("benchmark_data")
        
        return total_time
        
    except Exception as e:
        print(f"Optimized training benchmark failed: {e}")
        return None

def benchmark_cuda_training():
    """Benchmark the CUDA-optimized training approach"""
    print("\n=== Benchmarking CUDA-Optimized Training ===")
    
    try:
        # Import CUDA-optimized training
        from train_morphological_cuda import create_cuda_optimized_model, train_epoch_cuda, validate_cuda
        from morphological_dataset import MorphologicalDataset, build_vocabulary, collate_fn
        
        # Setup minimal data for benchmarking
        os.makedirs("benchmark_data", exist_ok=True)
        
        with open("benchmark_data/test.src", "w") as f:
            f.write("hello world\n" * 100)
        
        with open("benchmark_data/test.tgt", "w") as f:
            f.write("hola mundo\n" * 100)
        
        # Build vocabulary
        src_vocab = build_vocabulary(["benchmark_data/test.src"])
        tgt_vocab = build_vocabulary(["benchmark_data/test.tgt"])
        
        # Create dataset
        dataset = MorphologicalDataset("benchmark_data/test.src", "benchmark_data/test.tgt", 
                                     src_vocab, tgt_vocab, max_length=50)
        
        # Create dataloader
        from torch.utils.data import DataLoader
        dataloader = DataLoader(
            dataset, 
            batch_size=1024, 
            shuffle=True, 
            collate_fn=lambda batch: collate_fn(batch, src_vocab, tgt_vocab, 50),
            num_workers=16,
            pin_memory=True,
            persistent_workers=True,
            prefetch_factor=8,
            drop_last=True,
            multiprocessing_context='spawn'
        )
        
        # Create model
        config = {
            'embed_dim': 256,
            'nb_heads': 4,
            'src_hid_size': 1024,
            'src_nb_layers': 4,
            'trg_hid_size': 1024,
            'trg_nb_layers': 4,
            'dropout_p': 0.1,
            'tie_trg_embed': True,
            'label_smooth': 0.1,
            'use_amp': True,
            'gradient_accumulation_steps': 1,
        }
        
        model = create_cuda_optimized_model(config, src_vocab, tgt_vocab)
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        model = model.to(device, memory_format=torch.channels_last)
        
        # Create optimizer
        optimizer = torch.optim.AdamW(model.parameters(), lr=0.001, foreach=True, fused=True)
        
        # Create scaler
        from torch.cuda.amp import GradScaler
        scaler = GradScaler(enabled=True)
        
        # Benchmark training
        start_time = time.time()
        
        # Run a few epochs for benchmarking
        for epoch in range(3):
            train_loss = train_epoch_cuda(
                model, dataloader, optimizer, device, epoch, config, scaler
            )
        
        end_time = time.time()
        total_time = end_time - start_time
        
        print(f"CUDA-optimized training: {total_time:.2f}s for 3 epochs")
        
        # Cleanup
        import shutil
        shutil.rmtree("benchmark_data")
        
        return total_time
        
    except Exception as e:
        print(f"CUDA training benchmark failed: {e}")
        return None

def run_performance_comparison():
    """Run complete performance comparison"""
    print("πŸš€ Performance Comparison: Training Approaches")
    print("=" * 60)
    
    # Check CUDA availability
    if torch.cuda.is_available():
        print(f"βœ“ CUDA available: {torch.cuda.get_device_name()}")
        print(f"βœ“ CUDA Memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.1f} GB")
    else:
        print("⚠ CUDA not available - some optimizations will be disabled")
    
    print()
    
    # Run benchmarks
    results = {}
    
    # Original training
    original_time = benchmark_original_training()
    if original_time:
        results['Original'] = original_time
    
    # Optimized training
    optimized_time = benchmark_optimized_training()
    if optimized_time:
        results['Optimized'] = optimized_time
    
    # CUDA-optimized training
    cuda_time = benchmark_cuda_training()
    if cuda_time:
        results['CUDA-Optimized'] = cuda_time
    
    # Print results
    print("\n" + "=" * 60)
    print("πŸ“Š PERFORMANCE COMPARISON RESULTS")
    print("=" * 60)
    
    if results:
        # Sort by time (fastest first)
        sorted_results = sorted(results.items(), key=lambda x: x[1])
        
        fastest = sorted_results[0]
        print(f"πŸ† Fastest: {fastest[0]} ({fastest[1]:.2f}s)")
        
        print("\nAll Results:")
        for i, (name, time_taken) in enumerate(sorted_results):
            if i == 0:
                print(f"πŸ₯‡ {name}: {time_taken:.2f}s (Baseline)")
            elif i == 1:
                print(f"πŸ₯ˆ {name}: {time_taken:.2f}s")
            else:
                print(f"πŸ₯‰ {name}: {time_taken:.2f}s")
            
            if i > 0:
                speedup = fastest[1] / time_taken
                print(f"    Speedup: {speedup:.1f}x slower than {fastest[0]}")
        
        # Calculate improvements
        if len(results) >= 2:
            print(f"\nπŸš€ Performance Improvements:")
            baseline = results['Original'] if 'Original' in results else fastest[1]
            
            for name, time_taken in results.items():
                if name != 'Original':
                    improvement = baseline / time_taken
                    print(f"   {name}: {improvement:.1f}x faster than baseline")
    
    else:
        print("❌ No benchmarks completed successfully")
    
    print("\n" + "=" * 60)
    print("πŸ’‘ Recommendations:")
    
    if 'CUDA-Optimized' in results:
        print("   β€’ Use CUDA-optimized training for maximum speed")
    elif 'Optimized' in results:
        print("   β€’ Use optimized training for better performance")
    else:
        print("   β€’ Consider upgrading PyTorch or checking dependencies")
    
    print("   β€’ Monitor GPU memory usage during training")
    print("   β€’ Adjust batch size based on your GPU memory")
    
    return results

if __name__ == '__main__':
    run_performance_comparison()