File size: 6,696 Bytes
1f39ae1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#!/usr/bin/env python3
"""
Batch training script for all morphological reinflection datasets on Hugging Face
"""

import os
import subprocess
import argparse
from pathlib import Path

def run_training_command(cmd):
    """Run a training command and handle errors"""
    print(f"Running: {' '.join(cmd)}")
    try:
        result = subprocess.run(cmd, check=True, capture_output=True, text=True)
        print(f"βœ… Success: {cmd[2]}")  # cmd[2] is the model name
        return True
    except subprocess.CalledProcessError as e:
        print(f"❌ Error training {cmd[2]}: {e}")
        print(f"STDOUT: {e.stdout}")
        print(f"STDERR: {e.stderr}")
        return False

def main():
    parser = argparse.ArgumentParser(description='Train all morphological transformer models on Hugging Face')
    parser.add_argument('--username', type=str, required=True, help='Your Hugging Face username')
    parser.add_argument('--wandb_project', type=str, default='morphological-transformer', help='Weights & Biases project name')
    parser.add_argument('--hf_token', type=str, help='Hugging Face token for model upload')
    parser.add_argument('--upload_models', action='store_true', help='Upload models to Hugging Face Hub')
    parser.add_argument('--output_dir', type=str, default='./hf_models', help='Output directory')
    parser.add_argument('--datasets', nargs='+', default=['10L_90NL', '50L_50NL', '90L_10NL'], 
                       help='Datasets to train (default: all)')
    parser.add_argument('--runs', nargs='+', default=['1', '2', '3'], 
                       help='Runs to train (default: all)')
    parser.add_argument('--dry_run', action='store_true', help='Print commands without executing')
    args = parser.parse_args()
    
    # Base command template
    base_cmd = [
        'python', 'scripts/train_huggingface.py',
        '--output_dir', args.output_dir,
        '--wandb_project', args.wandb_project
    ]
    
    if args.hf_token:
        base_cmd.extend(['--hf_token', args.hf_token])
    
    if args.upload_models:
        base_cmd.append('--upload_model')
    
    # Dataset configurations
    datasets = {
        '10L_90NL': {
            'train_pattern': './10L_90NL/train/run{run}/train.10L_90NL_{run}_1.src',
            'train_tgt_pattern': './10L_90NL/train/run{run}/train.10L_90NL_{run}_1.tgt',
            'dev_pattern': './10L_90NL/dev/run{run}/dev.10L_90NL_{run}_1.src',
            'dev_tgt_pattern': './10L_90NL/dev/run{run}/dev.10L_90NL_{run}_1.tgt',
            'test_pattern': './10L_90NL/test/run{run}/test.10L_90NL_{run}_1.src',
            'test_tgt_pattern': './10L_90NL/test/run{run}/test.10L_90NL_{run}_1.tgt',
            'model_name_pattern': '{username}/morphological-transformer-10L90NL-run{run}'
        },
        '50L_50NL': {
            'train_pattern': './50L_50NL/train/run{run}/train.50L_50NL_{run}_1.src',
            'train_tgt_pattern': './50L_50NL/train/run{run}/train.50L_50NL_{run}_1.tgt',
            'dev_pattern': './50L_50NL/dev/run{run}/dev.50L_50NL_{run}_1.src',
            'dev_tgt_pattern': './50L_50NL/dev/run{run}/dev.50L_50NL_{run}_1.tgt',
            'test_pattern': './50L_50NL/test/run{run}/test.50L_50NL_{run}_1.src',
            'test_tgt_pattern': './50L_50NL/test/run{run}/test.50L_50NL_{run}_1.tgt',
            'model_name_pattern': '{username}/morphological-transformer-50L50NL-run{run}'
        },
        '90L_10NL': {
            'train_pattern': './90L_10NL/train/run{run}/train.90L_10NL_{run}_1.src',
            'train_tgt_pattern': './90L_10NL/train/run{run}/train.90L_10NL_{run}_1.tgt',
            'dev_pattern': './90L_10NL/dev/run{run}/dev.90L_10NL_{run}_1.src',
            'dev_tgt_pattern': './90L_10NL/dev/run{run}/dev.90L_10NL_{run}_1.tgt',
            'test_pattern': './90L_10NL/test/run{run}/test.90L_10NL_{run}_1.src',
            'test_tgt_pattern': './90L_10NL/test/run{run}/test.90L_10NL_{run}_1.tgt',
            'model_name_pattern': '{username}/morphological-transformer-90L10NL-run{run}'
        }
    }
    
    # Generate training commands
    commands = []
    for dataset in args.datasets:
        if dataset not in datasets:
            print(f"⚠️  Unknown dataset: {dataset}")
            continue
            
        config = datasets[dataset]
        
        for run in args.runs:
            # Check if data files exist
            train_src = config['train_pattern'].format(run=run)
            train_tgt = config['train_tgt_pattern'].format(run=run)
            dev_src = config['dev_pattern'].format(run=run)
            dev_tgt = config['dev_tgt_pattern'].format(run=run)
            test_src = config['test_pattern'].format(run=run)
            test_tgt = config['test_tgt_pattern'].format(run=run)
            
            # Check if files exist
            missing_files = []
            for file_path in [train_src, train_tgt, dev_src, dev_tgt, test_src, test_tgt]:
                if not os.path.exists(file_path):
                    missing_files.append(file_path)
            
            if missing_files:
                print(f"⚠️  Skipping {dataset} run {run} - missing files: {missing_files}")
                continue
            
            # Build command
            model_name = config['model_name_pattern'].format(username=args.username, run=run)
            cmd = base_cmd + [
                '--model_name', model_name,
                '--train_src', train_src,
                '--train_tgt', train_tgt,
                '--dev_src', dev_src,
                '--dev_tgt', dev_tgt,
                '--test_src', test_src,
                '--test_tgt', test_tgt
            ]
            
            commands.append(cmd)
    
    print(f"πŸš€ Found {len(commands)} training jobs to run")
    
    if args.dry_run:
        print("\nπŸ“‹ Commands that would be executed:")
        for i, cmd in enumerate(commands, 1):
            print(f"{i:2d}. {' '.join(cmd)}")
        return
    
    # Execute training commands
    successful = 0
    failed = 0
    
    for i, cmd in enumerate(commands, 1):
        print(f"\nπŸ”„ Training {i}/{len(commands)}: {cmd[2]}")
        
        if run_training_command(cmd):
            successful += 1
        else:
            failed += 1
    
    # Summary
    print(f"\nπŸ“Š Training Summary:")
    print(f"βœ… Successful: {successful}")
    print(f"❌ Failed: {failed}")
    print(f"πŸ“ˆ Success Rate: {successful/(successful+failed)*100:.1f}%")
    
    if successful > 0:
        print(f"\nπŸŽ‰ Models saved to: {args.output_dir}")
        if args.upload_models:
            print(f"🌐 Models uploaded to: https://huggingface.co/{args.username}")

if __name__ == '__main__':
    main()