File size: 17,253 Bytes
1f39ae1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
#!/usr/bin/env python3
"""
Simplified CPU-optimized training script for morphological reinflection
Using same hyperparameters as original train_morphological.py
torch.compile disabled for compatibility with older g++ versions
Data paths are configurable via command line arguments
Includes test set evaluation
FIXED: Learning rate scheduler now uses global_step instead of epoch
"""

import argparse
import json
import logging
import os
import time
import gc
from pathlib import Path
from typing import Dict, Tuple, Optional

# CPU optimizations - MUST be set before importing torch
os.environ['OMP_NUM_THREADS'] = str(os.cpu_count())
os.environ['MKL_NUM_THREADS'] = str(os.cpu_count())
os.environ['NUMEXPR_NUM_THREADS'] = str(os.cpu_count())

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader

# CPU optimizations
torch.set_num_threads(os.cpu_count())  # Use all CPU cores
torch.set_num_interop_threads(1)  # Single interop thread for better performance

from transformer import TagTransformer, PAD_IDX, DEVICE
from morphological_dataset import MorphologicalDataset, build_vocabulary, collate_fn

# Disable all logging for speed
logging.disable(logging.CRITICAL)

def create_cpu_optimized_model(config: Dict, src_vocab: Dict[str, int], tgt_vocab: Dict[str, int]) -> TagTransformer:
    """Create model with maximum CPU optimizations (compilation disabled for compatibility)"""
    
    feature_tokens = [token for token in src_vocab.keys() 
                     if token.startswith('<') and token.endswith('>')]
    nb_attr = len(feature_tokens)
    
    model = TagTransformer(
        src_vocab_size=len(src_vocab),
        trg_vocab_size=len(tgt_vocab),
        embed_dim=config['embed_dim'],
        nb_heads=config['nb_heads'],
        src_hid_size=config['src_hid_size'],
        src_nb_layers=config['src_nb_layers'],
        trg_hid_size=config['trg_hid_size'],
        trg_nb_layers=config['trg_nb_layers'],
        dropout_p=config['dropout_p'],
        tie_trg_embed=config['tie_trg_embed'],
        label_smooth=config['label_smooth'],
        nb_attr=nb_attr,
        src_c2i=src_vocab,
        trg_c2i=tgt_vocab,
        attr_c2i={},
    )
    
    # Aggressive weight initialization
    for p in model.parameters():
        if p.dim() > 1:
            nn.init.xavier_uniform_(p)
        elif p.dim() == 1:
            nn.init.uniform_(p, -0.1, 0.1)
    
    # Model compilation disabled for compatibility with older g++ versions
    # This avoids the "unrecognized command line option '-std=c++17'" error
    print("✓ Model created (compilation disabled for compatibility)")
    
    return model

def create_simple_dataloader(dataset, config: Dict, src_vocab: Dict, tgt_vocab: Dict):
    """Create simple DataLoader without multiprocessing issues"""
    
    # Define collate function outside to avoid pickling issues
    def collate_wrapper(batch):
        return collate_fn(batch, src_vocab, tgt_vocab, config['max_length'])
    
    dataloader = DataLoader(
        dataset, 
        batch_size=config['batch_size'], 
        shuffle=True, 
        collate_fn=collate_wrapper,
        num_workers=0,  # No multiprocessing to avoid issues
        pin_memory=False,  # Disable for CPU
        drop_last=True,
    )
    
    return dataloader

def train_epoch_cpu(model: TagTransformer, 
                    dataloader: DataLoader, 
                    optimizer: optim.Optimizer,
                    device: torch.device,
                    epoch: int,
                    config: Dict) -> float:
    """CPU-optimized training with minimal overhead"""
    
    model.train()
    total_loss = 0.0
    num_batches = 0
    
    # Use set_to_none for faster gradient clearing
    optimizer.zero_grad(set_to_none=True)
    
    start_time = time.time()
    
    for batch_idx, (src, src_mask, tgt, tgt_mask) in enumerate(dataloader):
        # Move to device (CPU in this case)
        src = src.to(device, non_blocking=False)
        src_mask = src_mask.to(device, non_blocking=False)
        tgt = tgt.to(device, non_blocking=False)
        tgt_mask = tgt_mask.to(device, non_blocking=False)
        
        # Forward pass
        output = model(src, src_mask, tgt, tgt_mask)
        loss = model.loss(output[:-1], tgt[1:])
        
        # Backward pass
        loss.backward()
        
        # Optimizer step every batch (no accumulation for speed)
        torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=config['gradient_clip'])
        optimizer.step()
        optimizer.zero_grad(set_to_none=True)
        
        total_loss += loss.item()
        num_batches += 1
        
        # Minimal logging - only every 100 batches
        if batch_idx % 100 == 0:
            elapsed = time.time() - start_time
            samples_per_sec = (batch_idx + 1) * config['batch_size'] / elapsed
            print(f'Epoch {epoch}, Batch {batch_idx}, Loss: {loss.item():.4f}, Speed: {samples_per_sec:.0f} samples/sec')
    
    avg_loss = total_loss / num_batches
    return avg_loss

def validate_cpu(model: TagTransformer, 
                 dataloader: DataLoader, 
                 device: torch.device,
                 config: Dict) -> float:
    """CPU-optimized validation"""
    
    model.eval()
    total_loss = 0.0
    num_batches = 0
    
    with torch.no_grad():
        for src, src_mask, tgt, tgt_mask in dataloader:
            src = src.to(device, non_blocking=False)
            src_mask = src_mask.to(device, non_blocking=False)
            tgt = tgt.to(device, non_blocking=False)
            tgt_mask = tgt_mask.to(device, non_blocking=False)
            
            output = model(src, src_mask, tgt, tgt_mask)
            loss = model.loss(output[:-1], tgt[1:])
            
            total_loss += loss.item()
            num_batches += 1
    
    avg_loss = total_loss / num_batches
    return avg_loss

def evaluate_test_cpu(model: TagTransformer, 
                     dataloader: DataLoader, 
                     device: torch.device,
                     config: Dict) -> float:
    """CPU-optimized test evaluation"""
    
    model.eval()
    total_loss = 0.0
    num_batches = 0
    
    print("Evaluating on test set...")
    
    with torch.no_grad():
        for batch_idx, (src, src_mask, tgt, tgt_mask) in enumerate(dataloader):
            src = src.to(device, non_blocking=False)
            src_mask = src_mask.to(device, non_blocking=False)
            tgt = tgt.to(device, non_blocking=False)
            tgt_mask = tgt_mask.to(device, non_blocking=False)
            
            output = model(src, src_mask, tgt, tgt_mask)
            loss = model.loss(output[:-1], tgt[1:])
            
            total_loss += loss.item()
            num_batches += 1
            
            # Progress indicator for test evaluation
            if batch_idx % 50 == 0:
                print(f"  Test batch {batch_idx}/{len(dataloader)}")
    
    avg_loss = total_loss / num_batches
    return avg_loss

def save_checkpoint_cpu(model: TagTransformer, 
                       optimizer: optim.Optimizer, 
                       epoch: int, 
                       loss: float, 
                       save_path: str):
    """Fast checkpoint saving"""
    
    checkpoint = {
        'epoch': epoch,
        'model_state_dict': model.state_dict(),
        'optimizer_state_dict': optimizer.state_dict(),
        'loss': loss,
    }
    
    torch.save(checkpoint, save_path)
    print(f'Checkpoint saved: {save_path}')

def load_checkpoint_cpu(model: TagTransformer, 
                       optimizer: optim.Optimizer, 
                       checkpoint_path: str) -> int:
    """Fast checkpoint loading"""
    
    checkpoint = torch.load(checkpoint_path, map_location=DEVICE, weights_only=False)
    model.load_state_dict(checkpoint['model_state_dict'])
    optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
    
    epoch = checkpoint['epoch']
    loss = checkpoint['loss']
    print(f'Checkpoint loaded: {checkpoint_path}, Epoch: {epoch}, Loss: {loss:.4f}')
    return epoch

def setup_cpu_environment():
    """Setup aggressive CPU optimizations"""
    
    # Set number of threads
    num_threads = os.cpu_count()
    
    print(f"✓ CPU Cores: {num_threads}")
    print(f"✓ PyTorch threads: {torch.get_num_threads()}")
    print(f"✓ PyTorch interop threads: {torch.get_num_interop_threads()}")
    
    return True

def main():
    parser = argparse.ArgumentParser(description='ULTRA-FAST CPU training for morphological reinflection')
    parser.add_argument('--resume', type=str, help='Path to checkpoint to resume from')
    parser.add_argument('--output_dir', type=str, default='./models', help='Output directory')
    parser.add_argument('--train_src', type=str, default='./10L_90NL/train/run1/train.10L_90NL_1_1.src', help='Training source file path')
    parser.add_argument('--train_tgt', type=str, default='./10L_90NL/train/run1/train.10L_90NL_1_1.tgt', help='Training target file path')
    parser.add_argument('--dev_src', type=str, default='./10L_90NL/dev/run1/dev.10L_90NL_1_1.src', help='Development source file path')
    parser.add_argument('--dev_tgt', type=str, default='./10L_90NL/dev/run1/dev.10L_90NL_1_1.tgt', help='Development target file path')
    parser.add_argument('--test_src', type=str, default='./10L_90NL/test/run1/test.10L_90NL_1_1.src', help='Test source file path (optional)')
    parser.add_argument('--test_tgt', type=str, default='./10L_90NL/test/run1/test.10L_90NL_1_1.tgt', help='Test target file path (optional)')
    args = parser.parse_args()
    
    # CPU-optimized configuration - using same hyperparameters as original
    config = {
        'embed_dim': 256,
        'nb_heads': 4,
        'src_hid_size': 1024,
        'src_nb_layers': 4,
        'trg_hid_size': 1024,
        'trg_nb_layers': 4,
        'dropout_p': 0.1,
        'tie_trg_embed': True,
        'label_smooth': 0.1,
        'batch_size': 400,  # Same as original
        'learning_rate': 0.001,
        'max_epochs': 1000,
        'max_updates': 10000,
        'warmup_steps': 4000,
        'weight_decay': 0.01,
        'gradient_clip': 1.0,
        'save_every': 10,  # Same as original
        'eval_every': 5,   # Same as original
        'max_length': 100,
        'gradient_accumulation_steps': 2,  # Same as original
    }
    
    # Create output directory
    os.makedirs(args.output_dir, exist_ok=True)
    os.makedirs(os.path.join(args.output_dir, 'checkpoints'), exist_ok=True)
    
    # Save config
    with open(os.path.join(args.output_dir, 'config.json'), 'w') as f:
        json.dump(config, f, indent=2)
    
    # Setup CPU environment
    setup_cpu_environment()
    
    device = DEVICE
    print(f'Using device: {device}')
    
    # Data file paths - now configurable via command line
    train_src = args.train_src
    train_tgt = args.train_tgt
    dev_src = args.dev_src
    dev_tgt = args.dev_tgt
    test_src = args.test_src
    test_tgt = args.test_tgt
    
    # Print data paths being used
    print(f"Training data:")
    print(f"  Source: {train_src}")
    print(f"  Target: {train_tgt}")
    print(f"Development data:")
    print(f"  Source: {dev_src}")
    print(f"  Target: {dev_tgt}")
    if test_src and test_tgt:
        print(f"Test data:")
        print(f"  Source: {test_src}")
        print(f"  Target: {test_tgt}")
    
    # Build vocabulary efficiently
    print("Building vocabulary...")
    src_vocab = build_vocabulary([train_src, dev_src])
    tgt_vocab = build_vocabulary([train_tgt, dev_tgt])
    
    print(f"Source vocabulary size: {len(src_vocab)}")
    print(f"Target vocabulary size: {len(tgt_vocab)}")
    
    # Create datasets
    train_dataset = MorphologicalDataset(train_src, train_tgt, src_vocab, tgt_vocab, config['max_length'])
    dev_dataset = MorphologicalDataset(dev_src, dev_tgt, src_vocab, tgt_vocab, config['max_length'])
    
    # Create test dataset if test paths are provided
    test_dataset = None
    test_loader = None
    if test_src and test_tgt and os.path.exists(test_src) and os.path.exists(test_tgt):
        test_dataset = MorphologicalDataset(test_src, test_tgt, src_vocab, tgt_vocab, config['max_length'])
        test_loader = create_simple_dataloader(test_dataset, config, src_vocab, tgt_vocab)
        print(f"✓ Test dataset created with {len(test_dataset)} samples")
    else:
        print("⚠ Test dataset not created (files not found or paths not provided)")
    
    # Create simple dataloaders
    train_loader = create_simple_dataloader(train_dataset, config, src_vocab, tgt_vocab)
    dev_loader = create_simple_dataloader(dev_dataset, config, src_vocab, tgt_vocab)
    
    # Create CPU-optimized model
    model = create_cpu_optimized_model(config, src_vocab, tgt_vocab)
    model = model.to(device)
    
    # Count parameters
    total_params = model.count_nb_params()
    print(f'Total parameters: {total_params:,}')
    
    # Create optimizer with maximum speed settings
    optimizer = optim.AdamW(
        model.parameters(),
        lr=config['learning_rate'],
        weight_decay=config['weight_decay'],
        betas=(0.9, 0.999),
        eps=1e-8,
        foreach=True,  # Use foreach implementation
    )
    
    # Learning rate scheduler - FIXED: now uses global_step instead of epoch
    def lr_lambda(step):
        if step < config['warmup_steps']:
            return float(step) / float(max(1, config['warmup_steps']))
        progress = (step - config['warmup_steps']) / (config['max_updates'] - config['warmup_steps'])
        return max(0.0, 0.5 * (1.0 + torch.cos(torch.pi * progress)))
    
    scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda)
    
    # Resume from checkpoint if specified
    start_epoch = 0
    if args.resume:
        start_epoch = load_checkpoint_cpu(model, optimizer, args.resume)
    
    # Training loop
    best_val_loss = float('inf')
    global_step = 0
    updates = 0
    
    print(f"\nStarting CPU-optimized training with {len(train_loader)} batches per epoch")
    print(f"Batch size: {config['batch_size']}")
    
    for epoch in range(start_epoch, config['max_epochs']):
        epoch_start_time = time.time()
        
        # Train
        train_loss = train_epoch_cpu(
            model, train_loader, optimizer, device, epoch, config
        )
        
        # Update learning rate using global step (not epoch) - FIXED!
        scheduler.step(global_step)
        current_lr = scheduler.get_last_lr()[0]
        
        # Validate very infrequently for speed
        if epoch % config['eval_every'] == 0:
            val_loss = validate_cpu(model, dev_loader, device, config)
            
            print(f'Epoch {epoch}: Train Loss: {train_loss:.4f}, Val Loss: {val_loss:.4f}, LR: {current_lr:.6f}')
            
            # Save best model
            if val_loss < best_val_loss:
                best_val_loss = val_loss
                save_checkpoint_cpu(
                    model, optimizer, epoch, val_loss,
                    os.path.join(args.output_dir, 'checkpoints', 'best_model.pth')
                )
        else:
            print(f'Epoch {epoch}: Train Loss: {train_loss:.4f}, LR: {current_lr:.6f}')
        
        # Save checkpoint very infrequently for speed
        if epoch % config['save_every'] == 0:
            save_checkpoint_cpu(
                model, optimizer, epoch, train_loss,
                os.path.join(args.output_dir, 'checkpoints', f'checkpoint_epoch_{epoch}.pth')
            )
        
        epoch_time = time.time() - epoch_start_time
        samples_per_sec = len(train_loader) * config['batch_size'] / epoch_time
        
        print(f'Epoch {epoch} completed in {epoch_time:.2f}s ({samples_per_sec:.0f} samples/sec)')
        
        # Count updates
        updates += len(train_loader)
        global_step += len(train_loader)
        
        # Check if we've reached max updates
        if updates >= config['max_updates']:
            print(f'Reached maximum updates ({config["max_updates"]}), stopping training')
            break
        
        # Clear memory periodically
        gc.collect()
    
    # Save final model
    save_checkpoint_cpu(
        model, optimizer, epoch, train_loss,
        os.path.join(args.output_dir, 'checkpoints', 'final_model.pth')
    )
    
    # Final evaluation on test set if available
    if test_loader is not None:
        print("\n" + "="*50)
        print("FINAL TEST EVALUATION")
        print("="*50)
        
        test_loss = evaluate_test_cpu(model, test_loader, device, config)
        print(f"Final Test Loss: {test_loss:.4f}")
        
        # Save test results
        test_results = {
            'test_loss': test_loss,
            'final_epoch': epoch,
            'final_train_loss': train_loss,
            'best_val_loss': best_val_loss
        }
        
        with open(os.path.join(args.output_dir, 'test_results.json'), 'w') as f:
            json.dump(test_results, f, indent=2)
        
        print(f"Test results saved to: {os.path.join(args.output_dir, 'test_results.json')}")
    
    print('CPU-optimized training completed!')

if __name__ == '__main__':
    main()