Spaces:
Runtime error
Runtime error
File size: 17,253 Bytes
1f39ae1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
#!/usr/bin/env python3
"""
Simplified CPU-optimized training script for morphological reinflection
Using same hyperparameters as original train_morphological.py
torch.compile disabled for compatibility with older g++ versions
Data paths are configurable via command line arguments
Includes test set evaluation
FIXED: Learning rate scheduler now uses global_step instead of epoch
"""
import argparse
import json
import logging
import os
import time
import gc
from pathlib import Path
from typing import Dict, Tuple, Optional
# CPU optimizations - MUST be set before importing torch
os.environ['OMP_NUM_THREADS'] = str(os.cpu_count())
os.environ['MKL_NUM_THREADS'] = str(os.cpu_count())
os.environ['NUMEXPR_NUM_THREADS'] = str(os.cpu_count())
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
# CPU optimizations
torch.set_num_threads(os.cpu_count()) # Use all CPU cores
torch.set_num_interop_threads(1) # Single interop thread for better performance
from transformer import TagTransformer, PAD_IDX, DEVICE
from morphological_dataset import MorphologicalDataset, build_vocabulary, collate_fn
# Disable all logging for speed
logging.disable(logging.CRITICAL)
def create_cpu_optimized_model(config: Dict, src_vocab: Dict[str, int], tgt_vocab: Dict[str, int]) -> TagTransformer:
"""Create model with maximum CPU optimizations (compilation disabled for compatibility)"""
feature_tokens = [token for token in src_vocab.keys()
if token.startswith('<') and token.endswith('>')]
nb_attr = len(feature_tokens)
model = TagTransformer(
src_vocab_size=len(src_vocab),
trg_vocab_size=len(tgt_vocab),
embed_dim=config['embed_dim'],
nb_heads=config['nb_heads'],
src_hid_size=config['src_hid_size'],
src_nb_layers=config['src_nb_layers'],
trg_hid_size=config['trg_hid_size'],
trg_nb_layers=config['trg_nb_layers'],
dropout_p=config['dropout_p'],
tie_trg_embed=config['tie_trg_embed'],
label_smooth=config['label_smooth'],
nb_attr=nb_attr,
src_c2i=src_vocab,
trg_c2i=tgt_vocab,
attr_c2i={},
)
# Aggressive weight initialization
for p in model.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
elif p.dim() == 1:
nn.init.uniform_(p, -0.1, 0.1)
# Model compilation disabled for compatibility with older g++ versions
# This avoids the "unrecognized command line option '-std=c++17'" error
print("✓ Model created (compilation disabled for compatibility)")
return model
def create_simple_dataloader(dataset, config: Dict, src_vocab: Dict, tgt_vocab: Dict):
"""Create simple DataLoader without multiprocessing issues"""
# Define collate function outside to avoid pickling issues
def collate_wrapper(batch):
return collate_fn(batch, src_vocab, tgt_vocab, config['max_length'])
dataloader = DataLoader(
dataset,
batch_size=config['batch_size'],
shuffle=True,
collate_fn=collate_wrapper,
num_workers=0, # No multiprocessing to avoid issues
pin_memory=False, # Disable for CPU
drop_last=True,
)
return dataloader
def train_epoch_cpu(model: TagTransformer,
dataloader: DataLoader,
optimizer: optim.Optimizer,
device: torch.device,
epoch: int,
config: Dict) -> float:
"""CPU-optimized training with minimal overhead"""
model.train()
total_loss = 0.0
num_batches = 0
# Use set_to_none for faster gradient clearing
optimizer.zero_grad(set_to_none=True)
start_time = time.time()
for batch_idx, (src, src_mask, tgt, tgt_mask) in enumerate(dataloader):
# Move to device (CPU in this case)
src = src.to(device, non_blocking=False)
src_mask = src_mask.to(device, non_blocking=False)
tgt = tgt.to(device, non_blocking=False)
tgt_mask = tgt_mask.to(device, non_blocking=False)
# Forward pass
output = model(src, src_mask, tgt, tgt_mask)
loss = model.loss(output[:-1], tgt[1:])
# Backward pass
loss.backward()
# Optimizer step every batch (no accumulation for speed)
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=config['gradient_clip'])
optimizer.step()
optimizer.zero_grad(set_to_none=True)
total_loss += loss.item()
num_batches += 1
# Minimal logging - only every 100 batches
if batch_idx % 100 == 0:
elapsed = time.time() - start_time
samples_per_sec = (batch_idx + 1) * config['batch_size'] / elapsed
print(f'Epoch {epoch}, Batch {batch_idx}, Loss: {loss.item():.4f}, Speed: {samples_per_sec:.0f} samples/sec')
avg_loss = total_loss / num_batches
return avg_loss
def validate_cpu(model: TagTransformer,
dataloader: DataLoader,
device: torch.device,
config: Dict) -> float:
"""CPU-optimized validation"""
model.eval()
total_loss = 0.0
num_batches = 0
with torch.no_grad():
for src, src_mask, tgt, tgt_mask in dataloader:
src = src.to(device, non_blocking=False)
src_mask = src_mask.to(device, non_blocking=False)
tgt = tgt.to(device, non_blocking=False)
tgt_mask = tgt_mask.to(device, non_blocking=False)
output = model(src, src_mask, tgt, tgt_mask)
loss = model.loss(output[:-1], tgt[1:])
total_loss += loss.item()
num_batches += 1
avg_loss = total_loss / num_batches
return avg_loss
def evaluate_test_cpu(model: TagTransformer,
dataloader: DataLoader,
device: torch.device,
config: Dict) -> float:
"""CPU-optimized test evaluation"""
model.eval()
total_loss = 0.0
num_batches = 0
print("Evaluating on test set...")
with torch.no_grad():
for batch_idx, (src, src_mask, tgt, tgt_mask) in enumerate(dataloader):
src = src.to(device, non_blocking=False)
src_mask = src_mask.to(device, non_blocking=False)
tgt = tgt.to(device, non_blocking=False)
tgt_mask = tgt_mask.to(device, non_blocking=False)
output = model(src, src_mask, tgt, tgt_mask)
loss = model.loss(output[:-1], tgt[1:])
total_loss += loss.item()
num_batches += 1
# Progress indicator for test evaluation
if batch_idx % 50 == 0:
print(f" Test batch {batch_idx}/{len(dataloader)}")
avg_loss = total_loss / num_batches
return avg_loss
def save_checkpoint_cpu(model: TagTransformer,
optimizer: optim.Optimizer,
epoch: int,
loss: float,
save_path: str):
"""Fast checkpoint saving"""
checkpoint = {
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss,
}
torch.save(checkpoint, save_path)
print(f'Checkpoint saved: {save_path}')
def load_checkpoint_cpu(model: TagTransformer,
optimizer: optim.Optimizer,
checkpoint_path: str) -> int:
"""Fast checkpoint loading"""
checkpoint = torch.load(checkpoint_path, map_location=DEVICE, weights_only=False)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
epoch = checkpoint['epoch']
loss = checkpoint['loss']
print(f'Checkpoint loaded: {checkpoint_path}, Epoch: {epoch}, Loss: {loss:.4f}')
return epoch
def setup_cpu_environment():
"""Setup aggressive CPU optimizations"""
# Set number of threads
num_threads = os.cpu_count()
print(f"✓ CPU Cores: {num_threads}")
print(f"✓ PyTorch threads: {torch.get_num_threads()}")
print(f"✓ PyTorch interop threads: {torch.get_num_interop_threads()}")
return True
def main():
parser = argparse.ArgumentParser(description='ULTRA-FAST CPU training for morphological reinflection')
parser.add_argument('--resume', type=str, help='Path to checkpoint to resume from')
parser.add_argument('--output_dir', type=str, default='./models', help='Output directory')
parser.add_argument('--train_src', type=str, default='./10L_90NL/train/run1/train.10L_90NL_1_1.src', help='Training source file path')
parser.add_argument('--train_tgt', type=str, default='./10L_90NL/train/run1/train.10L_90NL_1_1.tgt', help='Training target file path')
parser.add_argument('--dev_src', type=str, default='./10L_90NL/dev/run1/dev.10L_90NL_1_1.src', help='Development source file path')
parser.add_argument('--dev_tgt', type=str, default='./10L_90NL/dev/run1/dev.10L_90NL_1_1.tgt', help='Development target file path')
parser.add_argument('--test_src', type=str, default='./10L_90NL/test/run1/test.10L_90NL_1_1.src', help='Test source file path (optional)')
parser.add_argument('--test_tgt', type=str, default='./10L_90NL/test/run1/test.10L_90NL_1_1.tgt', help='Test target file path (optional)')
args = parser.parse_args()
# CPU-optimized configuration - using same hyperparameters as original
config = {
'embed_dim': 256,
'nb_heads': 4,
'src_hid_size': 1024,
'src_nb_layers': 4,
'trg_hid_size': 1024,
'trg_nb_layers': 4,
'dropout_p': 0.1,
'tie_trg_embed': True,
'label_smooth': 0.1,
'batch_size': 400, # Same as original
'learning_rate': 0.001,
'max_epochs': 1000,
'max_updates': 10000,
'warmup_steps': 4000,
'weight_decay': 0.01,
'gradient_clip': 1.0,
'save_every': 10, # Same as original
'eval_every': 5, # Same as original
'max_length': 100,
'gradient_accumulation_steps': 2, # Same as original
}
# Create output directory
os.makedirs(args.output_dir, exist_ok=True)
os.makedirs(os.path.join(args.output_dir, 'checkpoints'), exist_ok=True)
# Save config
with open(os.path.join(args.output_dir, 'config.json'), 'w') as f:
json.dump(config, f, indent=2)
# Setup CPU environment
setup_cpu_environment()
device = DEVICE
print(f'Using device: {device}')
# Data file paths - now configurable via command line
train_src = args.train_src
train_tgt = args.train_tgt
dev_src = args.dev_src
dev_tgt = args.dev_tgt
test_src = args.test_src
test_tgt = args.test_tgt
# Print data paths being used
print(f"Training data:")
print(f" Source: {train_src}")
print(f" Target: {train_tgt}")
print(f"Development data:")
print(f" Source: {dev_src}")
print(f" Target: {dev_tgt}")
if test_src and test_tgt:
print(f"Test data:")
print(f" Source: {test_src}")
print(f" Target: {test_tgt}")
# Build vocabulary efficiently
print("Building vocabulary...")
src_vocab = build_vocabulary([train_src, dev_src])
tgt_vocab = build_vocabulary([train_tgt, dev_tgt])
print(f"Source vocabulary size: {len(src_vocab)}")
print(f"Target vocabulary size: {len(tgt_vocab)}")
# Create datasets
train_dataset = MorphologicalDataset(train_src, train_tgt, src_vocab, tgt_vocab, config['max_length'])
dev_dataset = MorphologicalDataset(dev_src, dev_tgt, src_vocab, tgt_vocab, config['max_length'])
# Create test dataset if test paths are provided
test_dataset = None
test_loader = None
if test_src and test_tgt and os.path.exists(test_src) and os.path.exists(test_tgt):
test_dataset = MorphologicalDataset(test_src, test_tgt, src_vocab, tgt_vocab, config['max_length'])
test_loader = create_simple_dataloader(test_dataset, config, src_vocab, tgt_vocab)
print(f"✓ Test dataset created with {len(test_dataset)} samples")
else:
print("⚠ Test dataset not created (files not found or paths not provided)")
# Create simple dataloaders
train_loader = create_simple_dataloader(train_dataset, config, src_vocab, tgt_vocab)
dev_loader = create_simple_dataloader(dev_dataset, config, src_vocab, tgt_vocab)
# Create CPU-optimized model
model = create_cpu_optimized_model(config, src_vocab, tgt_vocab)
model = model.to(device)
# Count parameters
total_params = model.count_nb_params()
print(f'Total parameters: {total_params:,}')
# Create optimizer with maximum speed settings
optimizer = optim.AdamW(
model.parameters(),
lr=config['learning_rate'],
weight_decay=config['weight_decay'],
betas=(0.9, 0.999),
eps=1e-8,
foreach=True, # Use foreach implementation
)
# Learning rate scheduler - FIXED: now uses global_step instead of epoch
def lr_lambda(step):
if step < config['warmup_steps']:
return float(step) / float(max(1, config['warmup_steps']))
progress = (step - config['warmup_steps']) / (config['max_updates'] - config['warmup_steps'])
return max(0.0, 0.5 * (1.0 + torch.cos(torch.pi * progress)))
scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda)
# Resume from checkpoint if specified
start_epoch = 0
if args.resume:
start_epoch = load_checkpoint_cpu(model, optimizer, args.resume)
# Training loop
best_val_loss = float('inf')
global_step = 0
updates = 0
print(f"\nStarting CPU-optimized training with {len(train_loader)} batches per epoch")
print(f"Batch size: {config['batch_size']}")
for epoch in range(start_epoch, config['max_epochs']):
epoch_start_time = time.time()
# Train
train_loss = train_epoch_cpu(
model, train_loader, optimizer, device, epoch, config
)
# Update learning rate using global step (not epoch) - FIXED!
scheduler.step(global_step)
current_lr = scheduler.get_last_lr()[0]
# Validate very infrequently for speed
if epoch % config['eval_every'] == 0:
val_loss = validate_cpu(model, dev_loader, device, config)
print(f'Epoch {epoch}: Train Loss: {train_loss:.4f}, Val Loss: {val_loss:.4f}, LR: {current_lr:.6f}')
# Save best model
if val_loss < best_val_loss:
best_val_loss = val_loss
save_checkpoint_cpu(
model, optimizer, epoch, val_loss,
os.path.join(args.output_dir, 'checkpoints', 'best_model.pth')
)
else:
print(f'Epoch {epoch}: Train Loss: {train_loss:.4f}, LR: {current_lr:.6f}')
# Save checkpoint very infrequently for speed
if epoch % config['save_every'] == 0:
save_checkpoint_cpu(
model, optimizer, epoch, train_loss,
os.path.join(args.output_dir, 'checkpoints', f'checkpoint_epoch_{epoch}.pth')
)
epoch_time = time.time() - epoch_start_time
samples_per_sec = len(train_loader) * config['batch_size'] / epoch_time
print(f'Epoch {epoch} completed in {epoch_time:.2f}s ({samples_per_sec:.0f} samples/sec)')
# Count updates
updates += len(train_loader)
global_step += len(train_loader)
# Check if we've reached max updates
if updates >= config['max_updates']:
print(f'Reached maximum updates ({config["max_updates"]}), stopping training')
break
# Clear memory periodically
gc.collect()
# Save final model
save_checkpoint_cpu(
model, optimizer, epoch, train_loss,
os.path.join(args.output_dir, 'checkpoints', 'final_model.pth')
)
# Final evaluation on test set if available
if test_loader is not None:
print("\n" + "="*50)
print("FINAL TEST EVALUATION")
print("="*50)
test_loss = evaluate_test_cpu(model, test_loader, device, config)
print(f"Final Test Loss: {test_loss:.4f}")
# Save test results
test_results = {
'test_loss': test_loss,
'final_epoch': epoch,
'final_train_loss': train_loss,
'best_val_loss': best_val_loss
}
with open(os.path.join(args.output_dir, 'test_results.json'), 'w') as f:
json.dump(test_results, f, indent=2)
print(f"Test results saved to: {os.path.join(args.output_dir, 'test_results.json')}")
print('CPU-optimized training completed!')
if __name__ == '__main__':
main()
|