Spaces:
Sleeping
Sleeping
Bug Fix in Sketch affecting other areas
Browse files
README.md
CHANGED
|
@@ -4,7 +4,7 @@ emoji: 🌖
|
|
| 4 |
colorFrom: yellow
|
| 5 |
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
-
python_version: 3.12.
|
| 8 |
sdk_version: 5.22.0
|
| 9 |
app_file: app.py
|
| 10 |
pinned: false
|
|
@@ -24,7 +24,7 @@ thumbnail: >-
|
|
| 24 |
|
| 25 |
# Hex Game Maker
|
| 26 |
## Description
|
| 27 |
-
Welcome to Hex Game Maker, the ultimate tool for transforming your images into mesmerizing hexagon grid masterpieces! Well, this
|
| 28 |
The intention was to do a full conversion, but the limitation on Negative Prompts is what killed this approach. It does not consistently render table top maps.. but it can do a lot!
|
| 29 |
|
| 30 |
### What Can You Do?
|
|
|
|
| 4 |
colorFrom: yellow
|
| 5 |
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
+
python_version: 3.12.3
|
| 8 |
sdk_version: 5.22.0
|
| 9 |
app_file: app.py
|
| 10 |
pinned: false
|
|
|
|
| 24 |
|
| 25 |
# Hex Game Maker
|
| 26 |
## Description
|
| 27 |
+
Welcome to Hex Game Maker, the ultimate tool for transforming your images into mesmerizing hexagon grid masterpieces! **Well, this is a test project for HexaGrid.** It has some nice features that did not make it into the final version of the program.
|
| 28 |
The intention was to do a full conversion, but the limitation on Negative Prompts is what killed this approach. It does not consistently render table top maps.. but it can do a lot!
|
| 29 |
|
| 30 |
### What Can You Do?
|
app.py
CHANGED
|
@@ -54,6 +54,7 @@ from modules.constants import (
|
|
| 54 |
default_lut_example_img,
|
| 55 |
lut_files,
|
| 56 |
MAX_SEED,
|
|
|
|
| 57 |
# lut_folder,cards,
|
| 58 |
# cards_alternating,
|
| 59 |
# card_colors,
|
|
@@ -348,9 +349,14 @@ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scal
|
|
| 348 |
flash_attention_enabled = torch.backends.cuda.flash_sdp_enabled()
|
| 349 |
if flash_attention_enabled:
|
| 350 |
pipe.attn_implementation="flash_attention_2"
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 354 |
|
| 355 |
# Disable unnecessary features
|
| 356 |
pipe.safety_checker = None
|
|
@@ -384,12 +390,18 @@ def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps
|
|
| 384 |
flash_attention_enabled = torch.backends.cuda.flash_sdp_enabled()
|
| 385 |
if flash_attention_enabled:
|
| 386 |
pipe_i2i.attn_implementation="flash_attention_2"
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 390 |
|
| 391 |
# Disable unnecessary features
|
| 392 |
-
|
| 393 |
image_input = open_image(image_input_path)
|
| 394 |
print(f"\nGenerating image with prompt: {prompt_mash} and {image_input_path}\n")
|
| 395 |
approx_tokens= approximate_token_count(prompt_mash)
|
|
@@ -399,22 +411,24 @@ def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps
|
|
| 399 |
else:
|
| 400 |
prompt = prompt_mash
|
| 401 |
prompt2 = None
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
|
|
|
|
|
|
| 415 |
return final_image
|
| 416 |
|
| 417 |
-
@spaces.GPU(duration=140)
|
| 418 |
def run_lora(prompt, map_option, image_input, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, enlarge, use_conditioned_image=False, progress=gr.Progress(track_tqdm=True)):
|
| 419 |
if selected_index is None:
|
| 420 |
raise gr.Error("You must select a LoRA before proceeding.🧨")
|
|
@@ -422,6 +436,8 @@ def run_lora(prompt, map_option, image_input, image_strength, cfg_scale, steps,
|
|
| 422 |
# handle selecting a conditioned image from the gallery
|
| 423 |
global current_prerendered_image
|
| 424 |
conditioned_image=None
|
|
|
|
|
|
|
| 425 |
if use_conditioned_image:
|
| 426 |
print(f"Conditioned path: {current_prerendered_image.value}.. converting to RGB\n")
|
| 427 |
# ensure the conditioned image is an image and not a string, cannot use RGBA
|
|
@@ -468,15 +484,18 @@ def run_lora(prompt, map_option, image_input, image_strength, cfg_scale, steps,
|
|
| 468 |
|
| 469 |
if(image_input is not None):
|
| 470 |
print(f"\nGenerating image to image with seed: {seed}\n")
|
| 471 |
-
|
|
|
|
| 472 |
if enlarge:
|
| 473 |
-
upscaled_image = upscale_image(
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
|
|
|
|
|
|
| 480 |
yield final_image, seed, gr.update(visible=False)
|
| 481 |
else:
|
| 482 |
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress)
|
|
@@ -485,18 +504,20 @@ def run_lora(prompt, map_option, image_input, image_strength, cfg_scale, steps,
|
|
| 485 |
step_counter = 0
|
| 486 |
for image in image_generator:
|
| 487 |
step_counter+=1
|
| 488 |
-
|
| 489 |
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
| 490 |
yield image, seed, gr.update(value=progress_bar, visible=True)
|
| 491 |
|
| 492 |
if enlarge:
|
| 493 |
-
upscaled_image = upscale_image(
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
|
|
|
|
|
|
| 500 |
yield final_image, seed, gr.update(value=progress_bar, visible=False)
|
| 501 |
|
| 502 |
def get_huggingface_safetensors(link):
|
|
@@ -631,9 +652,11 @@ def update_sketch_dimensions(input_image, sketch_image):
|
|
| 631 |
sk_img_path, _ = get_image_from_dict(sketch_image)
|
| 632 |
sk_img = open_image(sk_img_path)
|
| 633 |
# Resize sketch image if dimensions don't match input image.
|
| 634 |
-
if in_img.size != sk_img.size:
|
| 635 |
sk_img = sk_img.resize(in_img.size, Image.LANCZOS)
|
| 636 |
-
|
|
|
|
|
|
|
| 637 |
|
| 638 |
@spaces.GPU()
|
| 639 |
def getVersions():
|
|
@@ -722,7 +745,7 @@ with gr.Blocks(css_paths="style_20250314.css", title=title, theme='Surn/beeuty',
|
|
| 722 |
lut_intensity = gr.Slider(label="Filter Intensity", minimum=-200, maximum=200, value=100, info="0 none, negative inverts the filter", interactive=True)
|
| 723 |
apply_lut_button = gr.Button("Apply Filter (LUT)", elem_classes="solid", elem_id="apply_lut_button")
|
| 724 |
with gr.Row():
|
| 725 |
-
lut_example_image = gr.Image(type="pil", label="Filter (LUT) Example Image", value=default_lut_example_img)
|
| 726 |
with gr.Row():
|
| 727 |
with gr.Column():
|
| 728 |
gr.Markdown("""
|
|
@@ -933,7 +956,7 @@ with gr.Blocks(css_paths="style_20250314.css", title=title, theme='Surn/beeuty',
|
|
| 933 |
).then(
|
| 934 |
fn=update_sketch_dimensions,
|
| 935 |
inputs=[input_image, sketch_image],
|
| 936 |
-
outputs=[sketch_image]
|
| 937 |
)
|
| 938 |
prerendered_image_gallery.select(
|
| 939 |
fn=on_prerendered_gallery_selection,
|
|
@@ -960,7 +983,7 @@ with gr.Blocks(css_paths="style_20250314.css", title=title, theme='Surn/beeuty',
|
|
| 960 |
).then(
|
| 961 |
fn=update_sketch_dimensions,
|
| 962 |
inputs=[input_image, sketch_image],
|
| 963 |
-
outputs=[sketch_image]
|
| 964 |
)
|
| 965 |
lora_gallery.select(
|
| 966 |
update_selection,
|
|
@@ -984,7 +1007,7 @@ with gr.Blocks(css_paths="style_20250314.css", title=title, theme='Surn/beeuty',
|
|
| 984 |
).then(
|
| 985 |
fn=update_sketch_dimensions,
|
| 986 |
inputs=[input_image, sketch_image],
|
| 987 |
-
outputs=[sketch_image]
|
| 988 |
)
|
| 989 |
|
| 990 |
load_env_vars(dotenv_path)
|
|
|
|
| 54 |
default_lut_example_img,
|
| 55 |
lut_files,
|
| 56 |
MAX_SEED,
|
| 57 |
+
IS_SHARED_SPACE,
|
| 58 |
# lut_folder,cards,
|
| 59 |
# cards_alternating,
|
| 60 |
# card_colors,
|
|
|
|
| 349 |
flash_attention_enabled = torch.backends.cuda.flash_sdp_enabled()
|
| 350 |
if flash_attention_enabled:
|
| 351 |
pipe.attn_implementation="flash_attention_2"
|
| 352 |
+
|
| 353 |
+
if IS_SHARED_SPACE:
|
| 354 |
+
pipe.vae.enable_tiling() # For larger resolutions if needed
|
| 355 |
+
else:
|
| 356 |
+
# Compile UNet
|
| 357 |
+
#pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead")
|
| 358 |
+
#pipe.enable_model_cpu_offload() #for smaller GPUs
|
| 359 |
+
pipe.vae.enable_slicing()
|
| 360 |
|
| 361 |
# Disable unnecessary features
|
| 362 |
pipe.safety_checker = None
|
|
|
|
| 390 |
flash_attention_enabled = torch.backends.cuda.flash_sdp_enabled()
|
| 391 |
if flash_attention_enabled:
|
| 392 |
pipe_i2i.attn_implementation="flash_attention_2"
|
| 393 |
+
|
| 394 |
+
if IS_SHARED_SPACE:
|
| 395 |
+
pipe_i2i.vae.enable_tiling() # For larger resolutions if needed
|
| 396 |
+
else:
|
| 397 |
+
# Compile UNet
|
| 398 |
+
# pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead") # uses the other pipe's transformer
|
| 399 |
+
# pipe_i2i.enable_model_cpu_offload() #for smaller GPUs
|
| 400 |
+
pipe_i2i.vae.enable_slicing()
|
| 401 |
+
|
| 402 |
|
| 403 |
# Disable unnecessary features
|
| 404 |
+
pipe_i2i.safety_checker = None
|
| 405 |
image_input = open_image(image_input_path)
|
| 406 |
print(f"\nGenerating image with prompt: {prompt_mash} and {image_input_path}\n")
|
| 407 |
approx_tokens= approximate_token_count(prompt_mash)
|
|
|
|
| 411 |
else:
|
| 412 |
prompt = prompt_mash
|
| 413 |
prompt2 = None
|
| 414 |
+
with calculateDuration("Generating image"):
|
| 415 |
+
# Generate image
|
| 416 |
+
final_image = pipe_i2i(
|
| 417 |
+
prompt=prompt,
|
| 418 |
+
prompt_2=prompt2,
|
| 419 |
+
image=image_input,
|
| 420 |
+
strength=image_strength,
|
| 421 |
+
num_inference_steps=steps,
|
| 422 |
+
guidance_scale=cfg_scale,
|
| 423 |
+
width=width,
|
| 424 |
+
height=height,
|
| 425 |
+
generator=generator,
|
| 426 |
+
joint_attention_kwargs={"scale": lora_scale},
|
| 427 |
+
output_type="pil",
|
| 428 |
+
).images[0]
|
| 429 |
return final_image
|
| 430 |
|
| 431 |
+
@spaces.GPU(duration=140,progress=gr.Progress(track_tqdm=True))
|
| 432 |
def run_lora(prompt, map_option, image_input, image_strength, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, enlarge, use_conditioned_image=False, progress=gr.Progress(track_tqdm=True)):
|
| 433 |
if selected_index is None:
|
| 434 |
raise gr.Error("You must select a LoRA before proceeding.🧨")
|
|
|
|
| 436 |
# handle selecting a conditioned image from the gallery
|
| 437 |
global current_prerendered_image
|
| 438 |
conditioned_image=None
|
| 439 |
+
formatted_map_option = map_option.lower().replace(' ', '_')
|
| 440 |
+
|
| 441 |
if use_conditioned_image:
|
| 442 |
print(f"Conditioned path: {current_prerendered_image.value}.. converting to RGB\n")
|
| 443 |
# ensure the conditioned image is an image and not a string, cannot use RGBA
|
|
|
|
| 484 |
|
| 485 |
if(image_input is not None):
|
| 486 |
print(f"\nGenerating image to image with seed: {seed}\n")
|
| 487 |
+
generated_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, lora_scale, seed, progress)
|
| 488 |
+
|
| 489 |
if enlarge:
|
| 490 |
+
upscaled_image = upscale_image(generated_image, max(1.0,min((TARGET_SIZE[0]/width),(TARGET_SIZE[1]/height))))
|
| 491 |
+
else:
|
| 492 |
+
upscaled_image = generated_image
|
| 493 |
+
# Save the upscaled image to a temporary file
|
| 494 |
+
with NamedTemporaryFile(delete=False, suffix=".png", prefix=f"{formatted_map_option}_") as tmp_upscaled:
|
| 495 |
+
upscaled_image.save(tmp_upscaled.name, format="PNG")
|
| 496 |
+
temp_files.append(tmp_upscaled.name)
|
| 497 |
+
print(f"Upscaled image saved to {tmp_upscaled.name}")
|
| 498 |
+
final_image = tmp_upscaled.name
|
| 499 |
yield final_image, seed, gr.update(visible=False)
|
| 500 |
else:
|
| 501 |
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress)
|
|
|
|
| 504 |
step_counter = 0
|
| 505 |
for image in image_generator:
|
| 506 |
step_counter+=1
|
| 507 |
+
generated_image = image
|
| 508 |
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
| 509 |
yield image, seed, gr.update(value=progress_bar, visible=True)
|
| 510 |
|
| 511 |
if enlarge:
|
| 512 |
+
upscaled_image = upscale_image(generated_image, max(1.0,min((TARGET_SIZE[0]/width),(TARGET_SIZE[1]/height))))
|
| 513 |
+
else:
|
| 514 |
+
upscaled_image = generated_image
|
| 515 |
+
# Save the upscaled image to a temporary file
|
| 516 |
+
with NamedTemporaryFile(delete=False, suffix=".png", prefix=f"{formatted_map_option}_") as tmp_upscaled:
|
| 517 |
+
upscaled_image.save(tmp_upscaled.name, format="PNG")
|
| 518 |
+
temp_files.append(tmp_upscaled.name)
|
| 519 |
+
print(f"Upscaled image saved to {tmp_upscaled.name}")
|
| 520 |
+
final_image = tmp_upscaled.name
|
| 521 |
yield final_image, seed, gr.update(value=progress_bar, visible=False)
|
| 522 |
|
| 523 |
def get_huggingface_safetensors(link):
|
|
|
|
| 652 |
sk_img_path, _ = get_image_from_dict(sketch_image)
|
| 653 |
sk_img = open_image(sk_img_path)
|
| 654 |
# Resize sketch image if dimensions don't match input image.
|
| 655 |
+
if (in_img) and (in_img.size != sk_img.size):
|
| 656 |
sk_img = sk_img.resize(in_img.size, Image.LANCZOS)
|
| 657 |
+
return [sk_img, gr.update(width=in_img.width, height=in_img.height)]
|
| 658 |
+
else:
|
| 659 |
+
return [sk_img, gr.update()]
|
| 660 |
|
| 661 |
@spaces.GPU()
|
| 662 |
def getVersions():
|
|
|
|
| 745 |
lut_intensity = gr.Slider(label="Filter Intensity", minimum=-200, maximum=200, value=100, info="0 none, negative inverts the filter", interactive=True)
|
| 746 |
apply_lut_button = gr.Button("Apply Filter (LUT)", elem_classes="solid", elem_id="apply_lut_button")
|
| 747 |
with gr.Row():
|
| 748 |
+
lut_example_image = gr.Image(type="pil", label="Filter (LUT) Example Image", value=default_lut_example_img, format="png")
|
| 749 |
with gr.Row():
|
| 750 |
with gr.Column():
|
| 751 |
gr.Markdown("""
|
|
|
|
| 956 |
).then(
|
| 957 |
fn=update_sketch_dimensions,
|
| 958 |
inputs=[input_image, sketch_image],
|
| 959 |
+
outputs=[sketch_image, sketch_image]
|
| 960 |
)
|
| 961 |
prerendered_image_gallery.select(
|
| 962 |
fn=on_prerendered_gallery_selection,
|
|
|
|
| 983 |
).then(
|
| 984 |
fn=update_sketch_dimensions,
|
| 985 |
inputs=[input_image, sketch_image],
|
| 986 |
+
outputs=[sketch_image, sketch_image]
|
| 987 |
)
|
| 988 |
lora_gallery.select(
|
| 989 |
update_selection,
|
|
|
|
| 1007 |
).then(
|
| 1008 |
fn=update_sketch_dimensions,
|
| 1009 |
inputs=[input_image, sketch_image],
|
| 1010 |
+
outputs=[sketch_image, sketch_image]
|
| 1011 |
)
|
| 1012 |
|
| 1013 |
load_env_vars(dotenv_path)
|