File size: 41,056 Bytes
3b12794 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 |
import * as d3 from 'd3';
document.addEventListener('DOMContentLoaded', function() {
// Navigation
const navLinks = document.querySelectorAll('nav a');
const sections = document.querySelectorAll('.dashboard-section');
navLinks.forEach(link => {
link.addEventListener('click', function(e) {
e.preventDefault();
const targetId = this.getAttribute('href').substring(1);
// Hide all sections
sections.forEach(section => {
section.classList.remove('active');
});
// Show target section
document.getElementById(targetId).classList.add('active');
// Update active nav link
navLinks.forEach(navLink => {
navLink.parentElement.classList.remove('active');
});
this.parentElement.classList.add('active');
});
});
// Close notification
const closeBtn = document.querySelector('.close-notification');
const notification = document.querySelector('.notification');
if (closeBtn && notification) {
closeBtn.addEventListener('click', function() {
notification.style.display = 'none';
});
}
// Charts
renderCharts();
// AI Model Marketplace Interactions
const deployButtons = document.querySelectorAll('.deploy-button');
deployButtons.forEach(button => {
button.addEventListener('click', function() {
// Display deployment notification
showNotification('Model Deployment', 'Your selected AI model is being deployed. Please wait...', 'info');
// Simulate deployment process
setTimeout(() => {
showNotification('Deployment Complete', 'Your AI model has been successfully deployed and is now active.', 'success');
}, 2000);
});
});
// Data Feed Tier Selection
const tierButtons = document.querySelectorAll('.tier-button');
tierButtons.forEach(button => {
button.addEventListener('click', function() {
const tierName = this.parentElement.querySelector('h3').textContent;
showNotification('Subscription', `You're being redirected to subscribe to the ${tierName} data feed tier.`, 'info');
});
});
// Initialize Research Lab Visualizations
if (document.getElementById('research-lab')) {
initResearchLab();
}
// Initialize monetization research section
if (document.getElementById('monetization-research')) {
initMonetizationResearch();
}
});
// Chart rendering function
function renderSimpleCharts() {
renderPerformanceChart();
renderDistributionChart();
renderRevenueChart();
renderPredictionChart();
}
function renderPerformanceChart() {
const container = document.getElementById('performanceChart');
if (!container) return;
// Clear previous content
container.innerHTML = '';
// Create SVG container
const width = container.clientWidth;
const height = container.clientHeight || 300;
const margin = {top: 20, right: 30, bottom: 30, left: 40};
const svg = d3.select(container)
.append('svg')
.attr('width', width)
.attr('height', height)
.append('g')
.attr('transform', `translate(${margin.left},${margin.top})`);
// Sample data
const data = [
{month: 'Jan', tvl: 120, revenue: 10},
{month: 'Feb', tvl: 140, revenue: 15},
{month: 'Mar', tvl: 167, revenue: 22},
{month: 'Apr', tvl: 205, revenue: 34},
{month: 'May', tvl: 250, revenue: 55},
{month: 'Jun', tvl: 302, revenue: 78},
{month: 'Jul', tvl: 335, revenue: 120},
{month: 'Aug', tvl: 410, revenue: 190},
{month: 'Sep', tvl: 442, revenue: 250},
{month: 'Oct', tvl: 468, revenue: 320},
{month: 'Nov', tvl: 480, revenue: 380},
{month: 'Dec', tvl: 487, revenue: 427}
];
// Scales
const x = d3.scaleBand()
.domain(data.map(d => d.month))
.range([0, width - margin.left - margin.right])
.padding(0.1);
const y = d3.scaleLinear()
.domain([0, d3.max(data, d => Math.max(d.tvl, d.revenue))])
.nice()
.range([height - margin.top - margin.bottom, 0]);
// Draw axes
svg.append('g')
.attr('transform', `translate(0,${height - margin.top - margin.bottom})`)
.call(d3.axisBottom(x));
svg.append('g')
.call(d3.axisLeft(y));
// Draw lines
const tvlLine = d3.line()
.x(d => x(d.month) + x.bandwidth()/2)
.y(d => y(d.tvl))
.curve(d3.curveMonotoneX);
const revenueLine = d3.line()
.x(d => x(d.month) + x.bandwidth()/2)
.y(d => y(d.revenue))
.curve(d3.curveMonotoneX);
svg.append('path')
.datum(data)
.attr('fill', 'none')
.attr('stroke', '#6c5ce7')
.attr('stroke-width', 2)
.attr('d', tvlLine);
svg.append('path')
.datum(data)
.attr('fill', 'none')
.attr('stroke', '#00cec9')
.attr('stroke-width', 2)
.attr('d', revenueLine);
// Legend
const legend = svg.append('g')
.attr('font-family', 'sans-serif')
.attr('font-size', 10)
.attr('text-anchor', 'end')
.selectAll('g')
.data(['TVL Growth', 'Protocol Revenue'])
.enter().append('g')
.attr('transform', (d, i) => `translate(0,${i * 20})`);
legend.append('rect')
.attr('x', width - margin.left - margin.right - 19)
.attr('width', 19)
.attr('height', 19)
.attr('fill', (d, i) => i === 0 ? '#6c5ce7' : '#00cec9');
legend.append('text')
.attr('x', width - margin.left - margin.right - 24)
.attr('y', 9.5)
.attr('dy', '0.32em')
.text(d => d);
}
function renderDistributionChart() {
const container = document.getElementById('modelDistributionChart');
if (!container) return;
// Clear previous content
container.innerHTML = '';
// Create SVG container
const width = container.clientWidth;
const height = container.clientHeight || 250;
const svg = d3.select(container)
.append('svg')
.attr('width', width)
.attr('height', height)
.append('g')
.attr('transform', `translate(${width/2},${height/2})`);
// Sample data
const data = [
{label: 'Yield Optimization', value: 35, color: '#00b894'},
{label: 'Risk Scoring', value: 25, color: '#ff7675'},
{label: 'Arbitrage Detection', value: 20, color: '#fdcb6e'},
{label: 'NFT Valuation', value: 15, color: '#6c5ce7'},
{label: 'Other', value: 5, color: '#b2bec3'}
];
// Compute pie layout
const pie = d3.pie()
.value(d => d.value)
.sort(null);
const radius = Math.min(width, height) / 2 - 40;
// Generate the arcs
const arc = d3.arc()
.innerRadius(radius * 0.6)
.outerRadius(radius);
// Draw pie segments
const segments = svg.selectAll('path')
.data(pie(data))
.enter()
.append('path')
.attr('d', arc)
.attr('fill', d => d.data.color)
.attr('stroke', 'white')
.style('stroke-width', '2px');
// Add labels
const labelRadius = radius * 1.2;
svg.selectAll('text')
.data(pie(data))
.enter()
.append('text')
.attr('transform', d => {
const pos = arc.centroid(d);
const midAngle = d.startAngle + (d.endAngle - d.startAngle) / 2;
pos[0] = labelRadius * Math.sin(midAngle);
pos[1] = -labelRadius * Math.cos(midAngle);
return `translate(${pos})`;
})
.style('text-anchor', d => {
const midAngle = d.startAngle + (d.endAngle - d.startAngle) / 2;
return (midAngle < Math.PI ? 'start' : 'end');
})
.style('font-size', '12px')
.text(d => d.data.label);
}
function renderRevenueChart() {
const container = document.getElementById('revenueStreamsChart');
if (!container) return;
// Clear previous content
container.innerHTML = '';
// Create SVG container
const width = container.clientWidth;
const height = container.clientHeight || 250;
const margin = {top: 20, right: 30, bottom: 40, left: 50};
const svg = d3.select(container)
.append('svg')
.attr('width', width)
.attr('height', height)
.append('g')
.attr('transform', `translate(${margin.left},${margin.top})`);
// Sample data
const data = [
{source: 'Model Marketplace', value: 120, color: 'rgba(108, 92, 231, 0.7)'},
{source: 'Data Feeds', value: 85, color: 'rgba(0, 206, 201, 0.7)'},
{source: 'Stablecoin Fees', value: 65, color: 'rgba(253, 121, 168, 0.7)'},
{source: 'Insurance Premiums', value: 45, color: 'rgba(0, 184, 148, 0.7)'},
{source: 'Credit Markets', value: 35, color: 'rgba(9, 132, 227, 0.7)'}
];
// Scales
const x = d3.scaleBand()
.domain(data.map(d => d.source))
.range([0, width - margin.left - margin.right])
.padding(0.3);
const y = d3.scaleLinear()
.domain([0, d3.max(data, d => d.value)])
.nice()
.range([height - margin.top - margin.bottom, 0]);
// Draw axes
svg.append('g')
.attr('transform', `translate(0,${height - margin.top - margin.bottom})`)
.call(d3.axisBottom(x))
.selectAll('text')
.attr('transform', 'rotate(-45)')
.style('text-anchor', 'end');
svg.append('g')
.call(d3.axisLeft(y));
// Draw bars
svg.selectAll('rect')
.data(data)
.enter()
.append('rect')
.attr('x', d => x(d.source))
.attr('y', d => y(d.value))
.attr('width', x.bandwidth())
.attr('height', d => height - margin.top - margin.bottom - y(d.value))
.attr('fill', d => d.color)
.attr('rx', 5)
.attr('ry', 5);
}
function renderPredictionChart() {
const container = document.getElementById('predictionChart');
if (!container) return;
// Create a simple visual for prediction chart
container.innerHTML = `
<svg width="100%" height="100%" viewBox="0 0 100 50">
<path d="M0,40 C15,35 25,25 40,20 C55,15 65,22 80,18 C95,15 100,25 100,30"
stroke="#f39c12" stroke-width="2" fill="none" />
<path d="M0,45 C20,40 30,35 50,30 C70,25 80,30 100,25"
stroke="#0984e3" stroke-width="2" fill="none" />
</svg>
`;
}
function loadLibraries() {
return import('https://cdn.jsdelivr.net/npm/d3@7/+esm').then(d3Module => {
window.d3 = d3Module;
return { d3: window.d3 };
});
}
function renderCharts() {
loadLibraries().then(() => {
renderSimpleCharts();
}).catch(error => {
console.error('Error loading libraries:', error);
});
}
// Function to show notifications
function showNotification(title, message, type = 'info') {
// Create notification container if it doesn't exist
let notificationCenter = document.querySelector('.notification-center');
if (!notificationCenter) {
notificationCenter = document.createElement('div');
notificationCenter.className = 'notification-center';
document.body.appendChild(notificationCenter);
}
// Create notification element
const notification = document.createElement('div');
notification.className = 'notification';
// Create icon based on type
const iconSvg = document.createElementNS('http://www.w3.org/2000/svg', 'svg');
iconSvg.setAttribute('viewBox', '0 0 24 24');
iconSvg.setAttribute('width', '20');
iconSvg.setAttribute('height', '20');
let iconPath = '';
let iconClass = '';
switch(type) {
case 'success':
iconPath = `
<circle cx="12" cy="12" r="10" fill="none" stroke="currentColor" stroke-width="2"/>
<path d="M8,12 L11,15 L16,9" fill="none" stroke="currentColor" stroke-width="2"/>
`;
iconClass = 'success';
break;
case 'error':
iconPath = `
<circle cx="12" cy="12" r="10" fill="none" stroke="currentColor" stroke-width="2"/>
<line x1="8" y1="8" x2="16" y2="16" stroke="currentColor" stroke-width="2"/>
<line x1="8" y1="16" x2="16" y2="8" stroke="currentColor" stroke-width="2"/>
`;
iconClass = 'error';
break;
case 'warning':
iconPath = `
<path d="M12,2 L22,22 L2,22 Z" stroke="currentColor" stroke-width="2" fill="none"/>
<line x1="12" y1="10" x2="12" y2="14" stroke="currentColor" stroke-width="2"/>
<circle cx="12" cy="18" r="1" fill="currentColor"/>
`;
iconClass = 'warning';
break;
default: // info
iconPath = `
<circle cx="12" cy="12" r="10" fill="none" stroke="currentColor" stroke-width="2"/>
<line x1="12" y1="8" x2="12" y2="12" stroke="currentColor" stroke-width="2"/>
<circle cx="12" cy="16" r="1" fill="currentColor"/>
`;
iconClass = 'info';
}
iconSvg.innerHTML = iconPath;
// Create notification content
const notificationIcon = document.createElement('div');
notificationIcon.className = `notification-icon ${iconClass}`;
notificationIcon.appendChild(iconSvg);
const notificationContent = document.createElement('div');
notificationContent.className = 'notification-content';
notificationContent.innerHTML = `<h4>${title}</h4><p>${message}</p>`;
const closeButton = document.createElement('button');
closeButton.className = 'close-notification';
closeButton.textContent = '×';
closeButton.addEventListener('click', function() {
notification.style.opacity = '0';
setTimeout(() => {
notification.remove();
}, 300);
});
// Assemble notification
notification.appendChild(notificationIcon);
notification.appendChild(notificationContent);
notification.appendChild(closeButton);
// Add to notification center
notificationCenter.appendChild(notification);
// Auto-remove after timeout
setTimeout(() => {
notification.style.opacity = '0';
setTimeout(() => {
notification.remove();
}, 300);
}, 5000);
}
// Simulated AI Model Evolution
let evolutionStep = 0;
const evolutionInterval = setInterval(function() {
if (evolutionStep < 5) {
let modelType, improvement;
switch(evolutionStep) {
case 0:
modelType = 'Yield Optimization';
improvement = '+2.3% APY improvement detected in yield models';
break;
case 1:
modelType = 'Risk Scoring';
improvement = 'New vulnerability pattern identified in lending protocol';
break;
case 2:
modelType = 'NFT Valuation';
improvement = 'Valuation model accuracy increased by 4.2%';
break;
case 3:
modelType = 'Arbitrage Detection';
improvement = 'New cross-chain arbitrage opportunity detected';
break;
case 4:
modelType = 'System';
improvement = 'Recursive self-improvement complete: v2.1 ready';
break;
}
showNotification(`AI Evolution: ${modelType}`, improvement, 'info');
evolutionStep++;
} else {
clearInterval(evolutionInterval);
}
}, 45000); // Show an evolution notification every 45 seconds
// Simulated market activity
setTimeout(function simulateMarketActivity() {
const activities = [
{ title: 'Market Alert', message: 'Unusual trading volume detected in ETH/BTC pair', type: 'warning' },
{ title: 'Stablecoin Update', message: 'RME-USD successfully maintained peg during market volatility', type: 'success' },
{ title: 'New AI Model', message: 'A new Quantum-Symbolic hybrid model has been published to the marketplace', type: 'info' },
{ title: 'Federated Learning', message: 'Cross-instance knowledge transfer complete with 23% accuracy improvement', type: 'success' },
{ title: 'Security Alert', message: 'Potential adversarial attack detected and mitigated', type: 'warning' }
];
const randomActivity = activities[Math.floor(Math.random() * activities.length)];
showNotification(randomActivity.title, randomActivity.message, randomActivity.type);
// Schedule next activity
const nextTime = 30000 + Math.random() * 60000; // Between 30s and 90s
setTimeout(simulateMarketActivity, nextTime);
}, 60000); // First activity after 60s
// Function to render symbolic network
function renderSymbolicNetwork() {
const svgElement = document.getElementById('symbolNetwork');
if (!svgElement) return;
// Use D3.js to create a network visualization
const width = 400;
const height = 200;
const svg = d3.select(svgElement);
// Generate sample data for the network
const nodes = Array.from({ length: 15 }, (_, i) => ({
id: i,
r: Math.random() * 5 + 3,
group: Math.floor(Math.random() * 3)
}));
const links = [];
for (let i = 0; i < nodes.length; i++) {
const numLinks = Math.floor(Math.random() * 3) + 1;
for (let j = 0; j < numLinks; j++) {
const target = Math.floor(Math.random() * nodes.length);
if (target !== i) {
links.push({ source: i, target: target, value: Math.random() });
}
}
}
// Create a force simulation
const simulation = d3.forceSimulation(nodes)
.force("link", d3.forceLink(links).id(d => d.id).distance(50))
.force("charge", d3.forceManyBody().strength(-30))
.force("center", d3.forceCenter(width / 2, height / 2));
// Add links
const link = svg.append("g")
.selectAll("line")
.data(links)
.enter().append("line")
.style("stroke", "#a29bfe")
.style("stroke-opacity", 0.6)
.style("stroke-width", d => Math.sqrt(d.value) * 2);
// Add nodes
const node = svg.append("g")
.selectAll("circle")
.data(nodes)
.enter().append("circle")
.attr("r", d => d.r)
.style("fill", d => ["#6c5ce7", "#00cec9", "#fd79a8"][d.group])
.call(d3.drag()
.on("start", dragstarted)
.on("drag", dragged)
.on("end", dragended));
// Add animation
const pulsingNodes = svg.append("g")
.selectAll("circle")
.data(nodes.filter(d => Math.random() > 0.7))
.enter().append("circle")
.attr("r", d => d.r + 5)
.style("fill", "none")
.style("stroke", d => ["#6c5ce7", "#00cec9", "#fd79a8"][d.group])
.style("stroke-opacity", 0.3)
.style("stroke-width", 2);
// Animate pulsing nodes
function pulsate() {
pulsingNodes
.transition()
.duration(1500)
.attr("r", d => d.r + 15)
.style("stroke-opacity", 0.1)
.transition()
.duration(1500)
.attr("r", d => d.r + 5)
.style("stroke-opacity", 0.3)
.on("end", pulsate);
}
pulsate();
simulation.on("tick", () => {
link
.attr("x1", d => Math.max(5, Math.min(width - 5, d.source.x)))
.attr("y1", d => Math.max(5, Math.min(height - 5, d.source.y)))
.attr("x2", d => Math.max(5, Math.min(width - 5, d.target.x)))
.attr("y2", d => Math.max(5, Math.min(height - 5, d.target.y)));
node
.attr("cx", d => Math.max(5, Math.min(width - 5, d.x)))
.attr("cy", d => Math.max(5, Math.min(height - 5, d.y)));
pulsingNodes
.attr("cx", d => Math.max(5, Math.min(width - 5, d.x)))
.attr("cy", d => Math.max(5, Math.min(height - 5, d.y)));
});
function dragstarted(event, d) {
if (!event.active) simulation.alphaTarget(0.3).restart();
d.fx = d.x;
d.fy = d.y;
}
function dragged(event, d) {
d.fx = event.x;
d.fy = event.y;
}
function dragended(event, d) {
if (!event.active) simulation.alphaTarget(0);
d.fx = null;
d.fy = null;
}
}
// Render learning trajectory chart
function renderLearningTrajectory() {
const canvas = document.getElementById('trajectoryCanvas');
if (!canvas) return;
// Create a simple SVG instead of Chart.js
const container = d3.select(canvas.parentNode);
canvas.remove(); // Remove the canvas element
const width = container.node().clientWidth;
const height = 200;
const svg = container.append('svg')
.attr('width', width)
.attr('height', height);
// Sample data
const data = [10, 15, 22, 28, 32, 35, 37, 45, 58, 67, 72, 76, 79, 82, 84, 85];
// Create scales
const x = d3.scaleLinear()
.domain([0, data.length - 1])
.range([20, width - 20]);
const y = d3.scaleLinear()
.domain([0, 100])
.range([height - 20, 20]);
// Create line
const line = d3.line()
.x((d, i) => x(i))
.y(d => y(d))
.curve(d3.curveMonotoneX);
// Draw line
svg.append('path')
.datum(data)
.attr('fill', 'none')
.attr('stroke', '#6c5ce7')
.attr('stroke-width', 2)
.attr('d', line);
// Add area below line
const area = d3.area()
.x((d, i) => x(i))
.y0(height - 20)
.y1(d => y(d))
.curve(d3.curveMonotoneX);
svg.append('path')
.datum(data)
.attr('fill', 'rgba(108, 92, 231, 0.1)')
.attr('d', area);
}
// Update research progress randomly to simulate ongoing research
function updateResearchProgress() {
const progressBar = document.querySelector('.research-progress .progress-value');
const progressLabel = document.querySelector('.progress-label span:last-child');
if (progressBar && progressLabel) {
const currentProgress = parseInt(progressBar.style.width);
let newProgress = currentProgress + Math.floor(Math.random() * 10) + 5;
// Cap at 95% to simulate ongoing research
if (newProgress > 95) newProgress = 95;
progressBar.style.width = newProgress + '%';
progressLabel.textContent = newProgress + '%';
}
}
// New function to initialize Research Lab Visualizations
function initResearchLab() {
loadLibraries().then(() => {
renderSymbolicNetwork();
renderLearningTrajectory();
// Add a delay to ensure Chart.js is properly initialized
setTimeout(() => {
renderMonetizationData();
}, 500);
// Add click handlers for research lab buttons
const actionButtons = document.querySelectorAll('.research-action-panel button');
actionButtons.forEach(button => {
button.addEventListener('click', function() {
showNotification('Deep Research', 'Initiating advanced research protocol. Processing data...', 'info');
// After a delay, show a research result notification
setTimeout(() => {
const researchFindings = [
'Quantum-symbolic pattern discovered in market data. Potential arbitrage strategy identified with 15.2% ROI.',
'Recursive AI model evolution complete. Performance improved by 23.7% with monetization potential of $34K/month.',
'New monetization pathway identified: AI-driven prediction markets with 87% accuracy and estimated $182K annual revenue.',
'Algorithmic stablecoin simulation shows 99.8% peg maintenance with recursive income generation of 12.3% APY.'
];
const randomFinding = researchFindings[Math.floor(Math.random() * researchFindings.length)];
showNotification('Research Complete', randomFinding, 'success');
// Update progress bar
updateResearchProgress();
}, 3000);
});
});
// Initialize monetization metrics auto-update
updateMonetizationMetrics();
}).catch(error => {
console.error('Error loading libraries:', error);
});
}
// Function to update monetization metrics
function updateMonetizationMetrics() {
const metrics = {
'modelSales': { base: 2450, variance: 150 },
'subscriptions': { base: 3850, variance: 200 },
'apiCalls': { base: 1250000, variance: 50000 },
'defiYield': { base: 8.4, variance: 0.5 },
'revenueQoQ': { base: 23.5, variance: 2.1 }
};
const updateMetric = (id, value) => {
const element = document.getElementById(id);
if (element) element.textContent = value;
};
// Initial update
Object.keys(metrics).forEach(metricId => {
const metric = metrics[metricId];
const value = metric.base + (Math.random() * 2 - 1) * metric.variance;
if (metricId === 'apiCalls') {
updateMetric(metricId, `${Math.round(value).toLocaleString()}`);
} else if (metricId === 'defiYield' || metricId === 'revenueQoQ') {
updateMetric(metricId, `${value.toFixed(1)}%`);
} else {
updateMetric(metricId, `$${Math.round(value).toLocaleString()}`);
}
});
// Schedule next update
setTimeout(updateMonetizationMetrics, 15000);
}
// New function to initialize monetization research section
function initMonetizationResearch() {
loadLibraries().then(() => {
renderMonetizationData();
initRecursiveModels();
updateRMEMetrics();
renderSymbolicSequence();
});
}
// Function to render symbolic sequence visualization
function renderSymbolicSequence() {
const canvas = document.getElementById('symbolicSequenceCanvas');
if (!canvas) return;
const ctx = canvas.getContext('2d');
const width = canvas.width;
const height = canvas.height;
// Clear canvas
ctx.clearRect(0, 0, width, height);
// Draw background
const gradient = ctx.createLinearGradient(0, 0, width, 0);
gradient.addColorStop(0, 'rgba(108, 92, 231, 0.1)');
gradient.addColorStop(0.5, 'rgba(0, 206, 201, 0.1)');
gradient.addColorStop(1, 'rgba(253, 121, 168, 0.1)');
ctx.fillStyle = gradient;
ctx.fillRect(0, 0, width, height);
// Draw the symbolic sequence
ctx.font = '16px Monaco, Courier New, monospace';
ctx.fillStyle = '#6c5ce7';
ctx.textAlign = 'center';
const formula1 = "Qi∞(Φ⟨Creativity⟩ ⊗ Λ⟨Recursive Logic⟩)";
const formula2 = "→ Σ⟨Exploration⟩ ∇⟨Adaptive Insight⟩";
const formula3 = "→ Ω⟨Market Resonance⟩ ⊕ Θ⟨Quantum Integration⟩";
const formula4 = "→ Δ⟨Continuous Innovation⟩";
ctx.fillText(formula1, width/2, height/5);
ctx.fillText(formula2, width/2, 2*height/5);
ctx.fillText(formula3, width/2, 3*height/5);
ctx.fillText(formula4, width/2, 4*height/5);
// Add animated particles
const particles = [];
for (let i = 0; i < 50; i++) {
particles.push({
x: Math.random() * width,
y: Math.random() * height,
radius: Math.random() * 3 + 1,
color: `rgba(${Math.floor(Math.random() * 100 + 100)}, ${Math.floor(Math.random() * 100 + 100)}, ${Math.floor(Math.random() * 100 + 150)}, 0.5)`,
speedX: Math.random() * 1 - 0.5,
speedY: Math.random() * 1 - 0.5
});
}
function animateParticles() {
ctx.clearRect(0, 0, width, height);
// Redraw background
ctx.fillStyle = gradient;
ctx.fillRect(0, 0, width, height);
// Redraw formulas
ctx.font = '16px Monaco, Courier New, monospace';
ctx.fillStyle = '#6c5ce7';
ctx.textAlign = 'center';
ctx.fillText(formula1, width/2, height/5);
ctx.fillText(formula2, width/2, 2*height/5);
ctx.fillText(formula3, width/2, 3*height/5);
ctx.fillText(formula4, width/2, 4*height/5);
// Draw and update particles
particles.forEach(particle => {
ctx.beginPath();
ctx.arc(particle.x, particle.y, particle.radius, 0, Math.PI * 2);
ctx.fillStyle = particle.color;
ctx.fill();
particle.x += particle.speedX;
particle.y += particle.speedY;
// Wrap around edges
if (particle.x < 0) particle.x = width;
if (particle.x > width) particle.x = 0;
if (particle.y < 0) particle.y = height;
if (particle.y > height) particle.y = 0;
});
requestAnimationFrame(animateParticles);
}
animateParticles();
}
// Initialize recursive AI models visualization
function initRecursiveModels() {
const canvas = document.getElementById('recursiveModelCanvas');
if (!canvas) return;
const ctx = canvas.getContext('2d');
const width = canvas.width;
const height = canvas.height;
// Generate nodes representing AI models
const nodes = [];
for (let i = 0; i < 20; i++) {
nodes.push({
x: Math.random() * width,
y: Math.random() * height,
radius: Math.random() * 10 + 5,
color: i < 5 ? '#6c5ce7' : (i < 10 ? '#00cec9' : '#fd79a8'),
connections: []
});
}
// Create connections between nodes
nodes.forEach((node, index) => {
const numConnections = Math.floor(Math.random() * 3) + 1;
for (let i = 0; i < numConnections; i++) {
const targetIndex = Math.floor(Math.random() * nodes.length);
if (targetIndex !== index) {
node.connections.push(targetIndex);
}
}
});
function render() {
ctx.clearRect(0, 0, width, height);
// Draw connections
nodes.forEach((node, index) => {
node.connections.forEach(targetIndex => {
const target = nodes[targetIndex];
ctx.beginPath();
ctx.moveTo(node.x, node.y);
ctx.lineTo(target.x, target.y);
ctx.strokeStyle = 'rgba(108, 92, 231, 0.2)';
ctx.lineWidth = 1;
ctx.stroke();
});
});
// Draw nodes
nodes.forEach(node => {
ctx.beginPath();
ctx.arc(node.x, node.y, node.radius, 0, Math.PI * 2);
ctx.fillStyle = node.color;
ctx.fill();
// Add a pulsing effect
ctx.beginPath();
ctx.arc(node.x, node.y, node.radius + 3 + Math.sin(Date.now() / 500) * 2, 0, Math.PI * 2);
ctx.strokeStyle = node.color.replace(')', ', 0.3)').replace('rgb', 'rgba');
ctx.stroke();
// Move nodes slightly for animation
node.x += (Math.random() * 2 - 1) * 0.5;
node.y += (Math.random() * 2 - 1) * 0.5;
// Keep within bounds
if (node.x < node.radius) node.x = node.radius;
if (node.x > width - node.radius) node.x = width - node.radius;
if (node.y < node.radius) node.y = node.radius;
if (node.y > height - node.radius) node.y = height - node.radius;
});
requestAnimationFrame(render);
}
render();
}
// Update RME metrics periodically
function updateRMEMetrics() {
const metrics = {
'modelMarketplace': { base: 2840, variance: 160 },
'dataFeeds': { base: 4250, variance: 220 },
'quantumComputing': { base: 1650, variance: 120 },
'recursiveGrowth': { base: 32.7, variance: 1.8 },
'monetizationIndex': { base: 87.3, variance: 2.5 }
};
function updateMetric(id, value, format = 'number') {
const element = document.getElementById(id);
if (!element) return;
if (format === 'currency') {
element.textContent = `$${Math.round(value).toLocaleString()}`;
} else if (format === 'percent') {
element.textContent = `${value.toFixed(1)}%`;
} else {
element.textContent = value.toLocaleString();
}
}
// Initial update
Object.keys(metrics).forEach(metricId => {
const metric = metrics[metricId];
const value = metric.base + (Math.random() * 2 - 1) * metric.variance;
const format = metricId.includes('Growth') || metricId.includes('Index') ? 'percent' : 'currency';
updateMetric(metricId, value, format);
});
// Schedule next update
setTimeout(updateRMEMetrics, 8000);
}
// Function to render monetization data
function renderMonetizationData() {
const monetizationCtx = document.getElementById('monetizationChart');
if (!monetizationCtx) return;
// Create a simple SVG instead of Chart.js
const container = d3.select(monetizationCtx);
container.html(''); // Clear previous content
const width = container.node().clientWidth;
const height = container.node().clientHeight || 300;
const svg = container.append('svg')
.attr('width', width)
.attr('height', height);
// Create a circular grid
const centerX = width / 2;
const centerY = height / 2;
const radius = Math.min(width, height) / 2 - 40;
// Draw radar grid
const categories = [
'AI Model Marketplace',
'Data Feed Subscriptions',
'DeFi Integration',
'Quantum-Symbolic Risk',
'Insurance Products',
'Stablecoin Revenues'
];
const angleSlice = Math.PI * 2 / categories.length;
// Draw axes
categories.forEach((cat, i) => {
const angle = i * angleSlice - Math.PI / 2;
const lineX2 = centerX + radius * Math.cos(angle);
const lineY2 = centerY + radius * Math.sin(angle);
svg.append('line')
.attr('x1', centerX)
.attr('y1', centerY)
.attr('x2', lineX2)
.attr('y2', lineY2)
.attr('stroke', '#dfe6e9')
.attr('stroke-width', 1);
// Add labels
const labelX = centerX + (radius + 20) * Math.cos(angle);
const labelY = centerY + (radius + 20) * Math.sin(angle);
svg.append('text')
.attr('x', labelX)
.attr('y', labelY)
.attr('text-anchor', 'middle')
.attr('alignment-baseline', 'middle')
.attr('font-size', '10px')
.text(cat);
});
// Draw concentric circles
[0.2, 0.4, 0.6, 0.8, 1].forEach(r => {
svg.append('circle')
.attr('cx', centerX)
.attr('cy', centerY)
.attr('r', radius * r)
.attr('fill', 'none')
.attr('stroke', '#dfe6e9')
.attr('stroke-width', 1);
});
// Sample data
const currentData = [65, 78, 35, 28, 42, 30].map(val => val / 100);
const potentialData = [85, 90, 75, 68, 80, 85].map(val => val / 100);
// Draw polygons
function drawPolygon(data, color, opacity) {
const points = data.map((val, i) => {
const angle = i * angleSlice - Math.PI / 2;
const x = centerX + radius * val * Math.cos(angle);
const y = centerY + radius * val * Math.sin(angle);
return `${x},${y}`;
}).join(' ');
svg.append('polygon')
.attr('points', points)
.attr('fill', color)
.attr('fill-opacity', opacity)
.attr('stroke', color)
.attr('stroke-width', 2);
}
drawPolygon(currentData, 'rgba(108, 92, 231, 1)', 0.2);
drawPolygon(potentialData, 'rgba(0, 206, 201, 1)', 0.2);
// Add legend
const legend = svg.append('g')
.attr('transform', `translate(${width - 140},20)`);
const legendItems = [
{label: 'Current Revenue', color: 'rgba(108, 92, 231, 1)'},
{label: 'Growth Potential', color: 'rgba(0, 206, 201, 1)'}
];
legendItems.forEach((item, i) => {
legend.append('rect')
.attr('x', 0)
.attr('y', i * 20)
.attr('width', 15)
.attr('height', 15)
.attr('fill', item.color)
.attr('fill-opacity', 0.2)
.attr('stroke', item.color);
legend.append('text')
.attr('x', 20)
.attr('y', i * 20 + 12)
.attr('font-size', '12px')
.text(item.label);
});
// Forecast chart
const forecastCtx = document.getElementById('forecastChart');
if (!forecastCtx) return;
// Create a simple line graph for forecast
const forecastContainer = d3.select(forecastCtx);
forecastContainer.html(''); // Clear previous content
const forecastWidth = forecastContainer.node().clientWidth;
const forecastHeight = forecastContainer.node().clientHeight || 300;
const margin = {top: 20, right: 60, bottom: 30, left: 60};
const forecastSvg = forecastContainer.append('svg')
.attr('width', forecastWidth)
.attr('height', forecastHeight)
.append('g')
.attr('transform', `translate(${margin.left},${margin.top})`);
// Generate sample data
const months = 24;
const baselineGrowth = Array.from({length: months}, (_, i) => 1000 * Math.pow(1.08, i));
const recursiveGrowth = Array.from({length: months}, (_, i) => 1000 * Math.pow(1.15, i));
const quantumBoostGrowth = Array.from({length: months}, (_, i) => {
const quantumBoost = i > 12 ? 1.2 : 1;
return 1000 * Math.pow(1.15, i) * quantumBoost;
});
// Scales
const xForecast = d3.scaleLinear()
.domain([1, months])
.range([0, forecastWidth - margin.left - margin.right]);
const yForecast = d3.scaleLinear()
.domain([0, d3.max(quantumBoostGrowth)])
.nice()
.range([forecastHeight - margin.top - margin.bottom, 0]);
// Axes
forecastSvg.append('g')
.attr('transform', `translate(0,${forecastHeight - margin.top - margin.bottom})`)
.call(d3.axisBottom(xForecast).ticks(6).tickFormat(d => `M${d}`));
forecastSvg.append('g')
.call(d3.axisLeft(yForecast));
// Line generator
const line = d3.line()
.x((d, i) => xForecast(i + 1))
.y(d => yForecast(d))
.curve(d3.curveMonotoneX);
// Draw lines
forecastSvg.append('path')
.datum(baselineGrowth)
.attr('fill', 'none')
.attr('stroke', '#dfe6e9')
.attr('stroke-width', 2)
.attr('d', line);
forecastSvg.append('path')
.datum(recursiveGrowth)
.attr('fill', 'none')
.attr('stroke', '#6c5ce7')
.attr('stroke-width', 2)
.attr('d', line);
forecastSvg.append('path')
.datum(quantumBoostGrowth)
.attr('fill', 'none')
.attr('stroke', '#00cec9')
.attr('stroke-width', 2)
.attr('d', line);
// Add legend
const forecastLegend = forecastSvg.append('g')
.attr('transform', `translate(${forecastWidth - margin.left - margin.right - 150},0)`);
const forecastLegendItems = [
{label: 'Baseline Growth', color: '#dfe6e9'},
{label: 'Recursive Growth', color: '#6c5ce7'},
{label: 'Quantum-Boosted', color: '#00cec9'}
];
forecastLegendItems.forEach((item, i) => {
forecastLegend.append('line')
.attr('x1', 0)
.attr('y1', i * 20 + 10)
.attr('x2', 20)
.attr('y2', i * 20 + 10)
.attr('stroke', item.color)
.attr('stroke-width', 2);
forecastLegend.append('text')
.attr('x', 25)
.attr('y', i * 20 + 15)
.attr('font-size', '12px')
.text(item.label);
});
} |