File size: 16,473 Bytes
65ce328 4b17dd2 65ce328 4b17dd2 65ce328 4b17dd2 65ce328 4b17dd2 65ce328 4b17dd2 65ce328 65c1721 65ce328 2e231c7 c12aa5b d8eb8af 6eb18dc d8eb8af c12aa5b 65c1721 6eb18dc c12aa5b 65c1721 6eb18dc 65c1721 c12aa5b 65c1721 c12aa5b 65c1721 6eb18dc 65c1721 6eb18dc 65c1721 c12aa5b 65c1721 2e231c7 65c1721 2e231c7 65c1721 2e231c7 65c1721 2e231c7 65c1721 2e231c7 65c1721 2e231c7 65c1721 2e231c7 65c1721 2e231c7 65c1721 2e231c7 65c1721 2e231c7 65c1721 2e231c7 65c1721 65ce328 6eb18dc 65ce328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
from __future__ import annotations
import os
import copy
import uuid
import logging
from typing import List, Optional, Tuple, Dict
# Reduce progress/log spam before heavy imports
os.environ.setdefault("TQDM_DISABLE", "1")
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
import numpy as np
import torch
import torchaudio
import soundfile as sf
import gradio as gr
# NeMo
from nemo.collections.asr.models import ASRModel
from omegaconf import OmegaConf
from nemo.utils import logging as nemo_logging
# ----------------------------
# Config
# ----------------------------
MODEL_NAME = os.environ.get("PARAKEET_MODEL", "nvidia/parakeet-tdt-0.6b-v3")
TARGET_SR = 16_000
BEAM_SIZE = int(os.environ.get("PARAKEET_BEAM_SIZE", "32")) # Increased for subtle quality gains
OFFLINE_BATCH= int(os.environ.get("PARAKEET_BATCH", "8"))
CHUNK_S = float(os.environ.get("PARAKEET_CHUNK_S", "2.0"))
FLUSH_PAD_S = float(os.environ.get("PARAKEET_FLUSH_PAD_S", "2.0"))
# ----------------------------
# Logging (unified)
# ----------------------------
LOG_LEVEL = os.environ.get("LOG_LEVEL", "INFO").upper()
logger = logging.getLogger("parakeet_app")
logger.setLevel(getattr(logging, LOG_LEVEL, logging.INFO))
_handler = logging.StreamHandler()
_handler.setFormatter(logging.Formatter("%(asctime)s %(levelname)s %(name)s: %(message)s"))
logger.handlers = [_handler]
logger.propagate = False
# Quiet NeMo logs
nemo_logging.setLevel(logging.ERROR)
logging.getLogger("nemo").setLevel(logging.ERROR)
logging.getLogger("nemo.collections.asr").setLevel(logging.ERROR)
torch.set_grad_enabled(False)
# ----------------------------
# Audio utils
# ----------------------------
def to_mono_np(x: np.ndarray) -> np.ndarray:
if x.ndim == 2:
x = x.mean(axis=1)
return x.astype(np.float32, copy=False)
class ResamplerCache:
def __init__(self):
self._cache: Dict[int, torchaudio.transforms.Resample] = {}
def resample(self, wav: np.ndarray, src_sr: int) -> np.ndarray:
if src_sr == TARGET_SR:
return wav
if src_sr not in self._cache:
logger.debug(f"create_resampler src_sr={src_sr} -> {TARGET_SR}")
self._cache[src_sr] = torchaudio.transforms.Resample(orig_freq=src_sr, new_freq=TARGET_SR)
t = torch.from_numpy(wav)
if t.ndim == 1:
t = t.unsqueeze(0)
y = self._cache[src_sr](t)
return y.squeeze(0).numpy()
RESAMPLER = ResamplerCache()
def load_mono16k(path: str) -> np.ndarray:
"""Load any audio file, convert to mono float32 at 16 kHz."""
try:
wav, sr = sf.read(path, dtype="float32", always_2d=True) # (T,C)
wav = wav.mean(axis=1).astype(np.float32, copy=False)
return RESAMPLER.resample(wav, sr)
except Exception:
wav_t, sr = torchaudio.load(path) # (C,T)
if wav_t.dtype != torch.float32:
wav_t = wav_t.float()
wav = wav_t.mean(dim=0).numpy()
return RESAMPLER.resample(wav, int(sr))
# ----------------------------
# Model manager (MALSD batched beam everywhere, loop_labels=True)
# ----------------------------
class ParakeetManager:
def __init__(self, device: str = "cpu"):
self.device = torch.device(device)
logger.info(f"loading_model name={MODEL_NAME} device={self.device}")
self.model: ASRModel = ASRModel.from_pretrained(model_name=MODEL_NAME)
self.model.to(self.device)
self.model.eval()
for p in self.model.parameters():
p.requires_grad = False
# Base decoding cfg differs by class
if hasattr(self.model, "decoder") and hasattr(self.model.decoder, "decoder"):
self._base_decoding = copy.deepcopy(self.model.decoder.decoder.cfg)
else:
self._base_decoding = copy.deepcopy(self.model.cfg.decoding)
self._set_malsd_beam()
# Enable encoder caching for better streaming context (per NeMo docs/tutorials)
if hasattr(self.model.encoder, "set_default_att_context_size"):
self.model.encoder.set_default_att_context_size([512, 16]) # Large left for cumulative context, small right for buffering
logger.info("encoder_caching_enabled left=512 right=16")
logger.info(f"model_loaded strategy=malsd_batch beam_size={BEAM_SIZE}")
def _set_malsd_beam(self):
cfg = copy.deepcopy(self._base_decoding)
cfg.strategy = "malsd_batch"
cfg.beam = OmegaConf.create({
"beam_size": BEAM_SIZE,
"return_best_hypothesis": True,
"score_norm": True,
"allow_cuda_graphs": False, # CPU-only
"max_symbols_per_step": 10,
})
OmegaConf.set_struct(cfg, False)
cfg["loop_labels"] = True
cfg["fused_batch_size"] = -1
cfg["compute_timestamps"] = False
if hasattr(cfg, "greedy"):
cfg.greedy.use_cuda_graph_decoder = False
self.model.change_decoding_strategy(cfg)
logger.info("decoding_set strategy=malsd_batch loop_labels=True")
def _transcribe(self, items: List, *, partial=None):
with torch.inference_mode():
return self.model.transcribe(
items,
batch_size=1 if len(items) == 1 else OFFLINE_BATCH,
num_workers=0,
return_hypotheses=True,
partial_hypothesis=partial,
)
# Offline batch
def transcribe_files(self, paths: List[str]):
n = 0 if not paths else len(paths)
logger.info(f"files_run start count={n} batch={OFFLINE_BATCH}")
if not paths:
return []
arrays = [load_mono16k(p) for p in paths]
out = self._transcribe(arrays, partial=None)
results = []
for p, o in zip(paths, out):
h = o[0] if isinstance(o, list) and o else o
text = h if isinstance(h, str) else getattr(h, "text", "")
results.append({"path": p, "text": text})
logger.info("files_run ok")
return results
# Streaming step (rolling hypothesis)
def stream_step(self, audio_16k: np.ndarray, prev_hyp) -> object:
out = self._transcribe([audio_16k], partial=[prev_hyp] if prev_hyp is not None else None)
h = out[0][0] if isinstance(out[0], list) else out[0]
return h # Hypothesis
# ----------------------------
# Streaming session (no overlap, rolling hypothesis)
# ----------------------------
class StreamingSession:
def __init__(self, manager: ParakeetManager, chunk_s: float, flush_pad_s: float):
self.mgr = manager
self.chunk_s = chunk_s
self.flush_pad_s = flush_pad_s
self.hyp = None
self.pending = np.zeros(0, dtype=np.float32)
self.text = ""
logger.info(f"mic_reset chunk={self.chunk_s}s flush_pad={self.flush_pad_s}s")
def add_audio(self, audio: np.ndarray, src_sr: int):
mono = to_mono_np(audio)
res = RESAMPLER.resample(mono, src_sr)
self.pending = np.concatenate([self.pending, res]) if self.pending.size else res
self._drain()
def _drain(self):
C = int(self.chunk_s * TARGET_SR)
while self.pending.size >= C:
chunk = self.pending[:C]
self.pending = self.pending[C:]
try:
self.hyp = self.mgr.stream_step(chunk, self.hyp)
new_text = getattr(self.hyp, "text", "")
if new_text:
if self.text and new_text.startswith(self.text): # If cumulative (partial extends), replace with extended
self.text = new_text
else: # Else append (handles per-chunk case)
self.text += (' ' if self.text else '') + new_text
except Exception:
logger.exception("mic_step failed")
break
def flush(self) -> str:
if self.pending.size:
pad = np.zeros(int(self.flush_pad_s * TARGET_SR), dtype=np.float32)
final = np.concatenate([self.pending, pad])
try:
self.hyp = self.mgr.stream_step(final, self.hyp)
new_text = getattr(self.hyp, "text", "")
if new_text:
if self.text and new_text.startswith(self.text):
self.text = new_text
else:
self.text += (' ' if self.text else '') + new_text
self.text += '.' # Add period for sentence closure on flush
except Exception:
logger.exception("mic_flush failed")
self.pending = np.zeros(0, dtype=np.float32)
return self.text
# ----------------------------
# Simple session registry (avoid deepcopy in gr.State)
# ----------------------------
SESS: Dict[str, StreamingSession] = {}
def _new_session_id() -> str:
return uuid.uuid4().hex
# ----------------------------
# Gradio callbacks
# ----------------------------
MANAGER = ParakeetManager(device="cpu")
def _parse_gr_audio(x) -> Tuple[np.ndarray, int]:
if x is None:
return np.zeros(0, dtype=np.float32), TARGET_SR
if isinstance(x, tuple) and len(x) == 2:
sr = int(x[0]); arr = np.array(x[1], dtype=np.float32); return arr, sr
if isinstance(x, dict) and "data" in x and "sampling_rate" in x:
arr = np.array(x["data"], dtype=np.float32); sr = int(x["sampling_rate"]); return arr, sr
if isinstance(x, np.ndarray):
return x.astype(np.float32, copy=False), TARGET_SR
logger.error(f"unsupported_gr_audio_payload type={type(x)}"); raise ValueError("Unsupported audio payload")
def mic_step(audio_chunk, sess_id: Optional[str]):
if not sess_id or sess_id not in SESS:
sess_id = _new_session_id()
SESS[sess_id] = StreamingSession(MANAGER, CHUNK_S, FLUSH_PAD_S)
sess = SESS[sess_id]
try:
wav, sr = _parse_gr_audio(audio_chunk)
except Exception:
logger.exception("mic_parse failed")
return sess_id, sess.text
if wav.size:
sess.add_audio(wav, sr)
return sess_id, sess.text
def mic_flush(sess_id: Optional[str]):
if not sess_id or sess_id not in SESS:
return None, ""
text = SESS[sess_id].flush()
logger.info("mic_flush ok")
return None, text
def files_run(files):
n = 0 if not files else len(files)
logger.info(f"files_ui start count={n}")
if not files:
return []
paths: List[str] = []
for f in files:
if isinstance(f, str):
paths.append(f)
elif hasattr(f, "name"):
paths.append(f.name)
try:
results = MANAGER.transcribe_files(paths)
except Exception:
logger.exception("files_run failed"); raise
table = [[os.path.basename(r["path"]), r["text"]] for r in results]
logger.info("files_ui ok")
return table
# ----------------------------
# UI Definition
# ----------------------------
with gr.Blocks(title="Parakeet-TDT v3 (Unified MALSD Beam)") as demo:
gr.Markdown("### RELEASE: GIGA-CHAD-v.0.7")
features_data = [
["Model Setup", "Loads Parakeet-TDT-0.6b-v3 (RNNT-based) with MALSD "
"decoding for beam exploration and loop labels for alignments."],
["Audio Handling", "Resamples to 16kHz mono, supports various formats."],
["Streaming (Mic)", "Partial hypotheses for seamless updates, "
"session-based for multi-chunk context."],
["UI", "Gradio tabs—Mic for live input/output (flush to finalize), "
"Files for batch results table."],
["Tech Stack", "NeMo (ASR core), Gradio (web UI), Torchaudio/Soundfile "
"(audio utils)."],
]
gr.Dataframe(
value=features_data,
headers=["Feature", "Description"],
datatype=["text", "text"],
row_count=(len(features_data), "fixed"),
col_count=(2, "fixed"),
interactive=False,
wrap=True,
)
with gr.Tab("Mic"):
mic = gr.Audio(
sources=["microphone"], type="numpy", streaming=True, label="Speak"
)
text_out = gr.Textbox(label="Transcript", lines=4)
flush_btn = gr.Button("Flush")
state_id = gr.State()
mic.stream(
mic_step, inputs=[mic, state_id], outputs=[state_id, text_out]
)
flush_btn.click(mic_flush, inputs=[state_id], outputs=[state_id, text_out])
with gr.Tab("Files"):
files = gr.File(
file_count="multiple", type="filepath", label="Upload audio files"
)
run_btn = gr.Button("Run")
results_table = gr.Dataframe(
headers=["file", "text"],
label="Results",
row_count=(5, "dynamic"),
col_count=(2, "fixed"),
wrap=True,
)
run_btn.click(files_run, inputs=[files], outputs=[results_table])
with gr.Row():
with gr.Column():
demo_description = (
"<p><strong>Parakeet-TDT v3 ASR Demo: Real-Time Mic & File "
"Transcription on CPU</strong></p>"
"<p>This Hugging Face Space demonstrates a lightweight, CPU-based "
"Automatic Speech Recognition (ASR) application using NVIDIA's "
"Parakeet-TDT-0.6b-v3 model from NeMo. Unlike NVIDIA's official demo "
"(which only supports file uploads), this app shines with "
"<strong>real-time microphone streaming</strong> transcribe live "
"speech incrementally with high quality and context retention. "
"It's perfect for interactive demos, voice notes, or testing "
"multilingual ASR without a GPU.</p>"
)
gr.HTML(demo_description)
with gr.Column():
usage_html = (
"<h3>Usage</h3>"
"<ol>"
"<li><strong>Mic Tab</strong>: Click \"RECORD\" then speak into "
"your mic - text updates live. \"Flush\" button does nothing, "
"it's a feature :)</li>"
"<li><strong>Files Tab</strong>: Upload audio files (WAV); click "
"\"Run\" for transcripts. (Tested only WAV files, TODO: handle "
"more types like mp4)</li>"
"</ol>"
)
gr.HTML(usage_html)
limitations_html = (
"<h3>Limitations</h3>"
"<ul>"
"<li>Sessions are per-browser-tab (Gradio state) - I don't know if in "
"case many users will launch this, will it work?</li>"
"<li>To be sure, Duplicate this Space or Clone it to your own PC - for "
"full privacy, no GPU needed.</li>"
"</ul>"
)
gr.HTML(limitations_html)
highlights_html = (
"<h3>Why is this Space amazing? (For people looking for low-level stuff "
"of \"AI\" - yeah, I did it! BEAM! Streaming, no greedy_batch trash)</h3>"
"<ul>"
"<li><strong>Real-Time Mic Mode</strong>: Streams audio in 2s chunks, "
"merging hypotheses for smooth, cumulative transcripts. Handles "
"conversations with retained context.</li>"
"<li><strong>Advanced Decoding</strong>: Uses modern MALSD batch beam "
"search (beam=32) for accurate, error-resistant results, outperforming "
"basic greedy methods in ambiguous audio.</li>"
"<li><strong>CPU Efficiency</strong>: Runs fast on standard hardware (no "
"GPU needed), with optimized configs like no timestamps and fused "
"batching.</li>"
"<li><strong>File Mode Bonus</strong>: Batch transcribes uploads for "
"quick comparisons.</li>"
"<li><strong>Quality Edge</strong>: Approaches ideal transcripts with "
"minimal artifacts, making it ideal for developers/testing vs. static "
"NVIDIA spaces.</li>"
"</ul>"
)
gr.HTML(highlights_html)
todo_html = (
"<h3>TODO:</h3>"
"<ul>"
"<li>Change string-level to token level (y_sequence) hypothesis alignment "
"(quality improvement, advanced technical stuff ;))</li>"
"</ul>"
"<p>Contributions welcome! Fork and PR improvements.</p>"
"<p>Built with ❤️ using Grok's guidance.</p>"
)
gr.HTML(todo_html)
gr.HTML(
"<p>If you redistribute transcripts or fine-tuned weights, "
"please retain the CC-BY-4.0 attribution notice.</p>"
)
demo.queue().launch(ssr_mode=False) |