Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,154 +1,316 @@
|
|
| 1 |
-
import
|
| 2 |
-
import numpy as np
|
| 3 |
import random
|
| 4 |
-
|
| 5 |
-
import spaces #[uncomment to use ZeroGPU]
|
| 6 |
-
from diffusers import DiffusionPipeline
|
| 7 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
| 30 |
width,
|
| 31 |
height,
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
progress=gr.Progress(track_tqdm=True),
|
| 35 |
):
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
)
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
step=1,
|
| 97 |
-
value=0,
|
| 98 |
)
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
with gr.Row():
|
| 103 |
-
|
| 104 |
-
label="
|
| 105 |
-
|
| 106 |
-
maximum=MAX_IMAGE_SIZE,
|
| 107 |
-
step=32,
|
| 108 |
-
value=1024, # Replace with defaults that work for your model
|
| 109 |
)
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
label="
|
| 113 |
-
|
| 114 |
-
maximum=MAX_IMAGE_SIZE,
|
| 115 |
-
step=32,
|
| 116 |
-
value=1024, # Replace with defaults that work for your model
|
| 117 |
)
|
| 118 |
-
|
| 119 |
with gr.Row():
|
| 120 |
-
|
| 121 |
-
label="
|
| 122 |
-
|
| 123 |
-
maximum=10.0,
|
| 124 |
-
step=0.1,
|
| 125 |
-
value=0.0, # Replace with defaults that work for your model
|
| 126 |
)
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
label="
|
| 130 |
-
|
| 131 |
-
maximum=50,
|
| 132 |
-
step=1,
|
| 133 |
-
value=2, # Replace with defaults that work for your model
|
| 134 |
)
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
inputs=[
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
|
|
|
|
|
|
|
|
|
| 145 |
width,
|
| 146 |
height,
|
| 147 |
-
|
| 148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
],
|
| 150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
)
|
| 152 |
|
| 153 |
if __name__ == "__main__":
|
| 154 |
-
|
|
|
|
| 1 |
+
import os
|
|
|
|
| 2 |
import random
|
| 3 |
+
import time
|
|
|
|
|
|
|
| 4 |
import torch
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from ProT2I.prot2i_pipeline_sdxl import ProT2IPipeline
|
| 7 |
+
from ProT2I.processors import create_controller
|
| 8 |
+
from PIL import Image
|
| 9 |
+
import numpy as np
|
| 10 |
+
import difflib
|
| 11 |
+
import spaces
|
| 12 |
|
| 13 |
+
_HEADER_ = '''
|
| 14 |
+
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
|
| 15 |
+
<h1 style="font-size: 2.5rem; font-weight: 700; margin-bottom: 1rem; display: contents;">ProT2I for SDXL</h1>
|
| 16 |
+
</div>
|
| 17 |
|
| 18 |
+
⭐⭐⭐**Tips:**
|
| 19 |
+
- ⭐`Sub-prompts:` Enter the decomposed sub-prompts, one per line.
|
| 20 |
+
- ⭐`Subject Masking Words:` Enter the subject words for each sub-prompt, one per line. (Leave it a blank line, if you want to remove all attributes firstly.)
|
| 21 |
+
- ⭐We provide an example at the bottom that you can try.
|
| 22 |
+
- ⭐For attributes overflow, you can adaptively increase the `Threshold Value` for mask extraction.
|
| 23 |
+
'''
|
| 24 |
|
| 25 |
+
def create_placeholder_image():
|
| 26 |
+
return Image.fromarray(np.ones((512, 512, 3), dtype=np.uint8) * 255)
|
| 27 |
|
| 28 |
+
def get_diff_string(str1, str2):
|
| 29 |
+
"""
|
| 30 |
+
`str1` and `str2` are two strings.
|
| 31 |
+
This function returns the difference between the two strings as a string.
|
| 32 |
+
"""
|
| 33 |
+
diff = difflib.ndiff(str1.split(), str2.split())
|
| 34 |
+
added_parts = [word[2:] for word in diff if word.startswith('+ ')] # get added parts
|
| 35 |
+
return ' '.join(added_parts)
|
| 36 |
|
| 37 |
+
def init_pipeline():
|
| 38 |
+
device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
|
| 39 |
+
pipe = ProT2IPipeline.from_pretrained("SG161222/RealVisXL_V4.0", use_safetensors=True, variant='fp16').to(torch.float16)
|
| 40 |
+
pipe.enable_model_cpu_offload()
|
| 41 |
+
return pipe, device
|
| 42 |
|
| 43 |
+
def process_image(
|
| 44 |
+
sub_prompts,
|
| 45 |
+
lb_words,
|
| 46 |
+
n_self_replace,
|
| 47 |
+
lb_threshold,
|
| 48 |
+
attention_res,
|
| 49 |
+
use_nurse,
|
| 50 |
+
centroid_alignment,
|
| 51 |
width,
|
| 52 |
height,
|
| 53 |
+
inference_steps,
|
| 54 |
+
seed
|
|
|
|
| 55 |
):
|
| 56 |
+
try:
|
| 57 |
+
# Initialize pipeline
|
| 58 |
+
pipe, device = init_pipeline()
|
| 59 |
+
|
| 60 |
+
# Process sub-prompts
|
| 61 |
+
sps = [prompt.strip() for prompt in sub_prompts.split('\n') if prompt.strip()]
|
| 62 |
+
|
| 63 |
+
# Process semantic masking words
|
| 64 |
+
nps = []
|
| 65 |
+
for word in lb_words.split('\n'):
|
| 66 |
+
if word.strip():
|
| 67 |
+
nps.append(word.strip())
|
| 68 |
+
else:
|
| 69 |
+
nps.append(None)
|
| 70 |
+
|
| 71 |
+
# Validate inputs
|
| 72 |
+
if len(nps) + 1 != len(sps):
|
| 73 |
+
placeholder_image = create_placeholder_image()
|
| 74 |
+
return placeholder_image, [placeholder_image] * 3, f"Error: Number of semantic masks ({len(nps)}) should be one less than number of sub-prompts ({len(sps)})"
|
| 75 |
+
|
| 76 |
+
# Set fixed parameters from config
|
| 77 |
+
guidance_scale = 7.5
|
| 78 |
+
n_cross = 0.0
|
| 79 |
+
scale_factor = 1750
|
| 80 |
+
scale_range = (1.0, 0.0)
|
| 81 |
+
angle_loss_weight = 0.0
|
| 82 |
+
max_refinement_steps = [6, 3]
|
| 83 |
+
nursing_thresholds = {
|
| 84 |
+
0: 26, 1: 25, 2: 24, 3: 23, 4: 22.5, 5: 22,
|
| 85 |
+
}
|
| 86 |
+
save_cross_attention_maps = False
|
| 87 |
+
|
| 88 |
+
if seed == -1:
|
| 89 |
+
seed = random.randint(0, 1000000)
|
| 90 |
+
g_cpu = torch.Generator().manual_seed(seed)
|
| 91 |
+
|
| 92 |
+
# Create controllers
|
| 93 |
+
controller_list = []
|
| 94 |
+
run_name = f'runs-SDXL/{time.strftime("%Y%m%d-%H%M%S")}-{seed}'
|
| 95 |
+
controller_np = [[sps[i-1], sps[i]] for i in range(1, len(sps))]
|
| 96 |
+
|
| 97 |
+
# Prepare status messages
|
| 98 |
+
status_messages = [f"seed: {seed}"]
|
| 99 |
+
|
| 100 |
+
for i in range(len(controller_np)):
|
| 101 |
+
controller_kwargs = {
|
| 102 |
+
"edit_type": "refine",
|
| 103 |
+
"local_blend_words": nps[i],
|
| 104 |
+
"n_cross_replace": {"default_": n_cross},
|
| 105 |
+
"n_self_replace": float(n_self_replace),
|
| 106 |
+
"lb_threshold": float(lb_threshold)+1,
|
| 107 |
+
"lb_prompt": [sps[0]]*2,
|
| 108 |
+
"is_nursing": use_nurse,
|
| 109 |
+
"lb_res": (int(attention_res), int(attention_res)),
|
| 110 |
+
"run_name": run_name,
|
| 111 |
+
"save_map": save_cross_attention_maps,
|
| 112 |
+
}
|
| 113 |
+
|
| 114 |
+
# Get difference between sps[i+1] and sps[i]
|
| 115 |
+
if nps[i] is None:
|
| 116 |
+
subject_strig = ",".join(nps[1:])
|
| 117 |
+
status_messages.append(f"Remove attributes from {subject_strig}")
|
| 118 |
+
else:
|
| 119 |
+
diff_str = get_diff_string(sps[i], sps[i+1])
|
| 120 |
+
if diff_str:
|
| 121 |
+
status_messages.append(f"Add {diff_str} to {nps[i]}")
|
| 122 |
+
|
| 123 |
+
controller = create_controller(
|
| 124 |
+
prompts=controller_np[i],
|
| 125 |
+
cross_attention_kwargs=controller_kwargs,
|
| 126 |
+
num_inference_steps=inference_steps,
|
| 127 |
+
tokenizer=pipe.tokenizer,
|
| 128 |
+
device=device,
|
| 129 |
+
attn_res=(int(attention_res), int(attention_res))
|
| 130 |
)
|
| 131 |
+
controller_list.append(controller)
|
| 132 |
+
|
| 133 |
+
# Set up cross attention kwargs
|
| 134 |
+
cross_attention_kwargs = {
|
| 135 |
+
"subprompts": sps,
|
| 136 |
+
"set_controller": controller_list,
|
| 137 |
+
"subject_words": nps if use_nurse else None,
|
| 138 |
+
"nursing_threshold": nursing_thresholds,
|
| 139 |
+
"max_refinement_steps": max_refinement_steps,
|
| 140 |
+
"scale_factor": scale_factor,
|
| 141 |
+
"scale_range": scale_range,
|
| 142 |
+
"centroid_alignment": centroid_alignment,
|
| 143 |
+
"angle_loss_weight": angle_loss_weight,
|
| 144 |
+
}
|
| 145 |
+
|
| 146 |
+
# Generate images
|
| 147 |
+
output = pipe(
|
| 148 |
+
prompt=sps[-1], # Use the last sub-prompt as the final prompt
|
| 149 |
+
width=width,
|
| 150 |
+
height=height,
|
| 151 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 152 |
+
num_inference_steps=inference_steps,
|
| 153 |
+
num_images_per_prompt=1,
|
| 154 |
+
generator=g_cpu,
|
| 155 |
+
attn_res=(int(attention_res), int(attention_res)),
|
| 156 |
+
)[0]
|
| 157 |
+
|
| 158 |
+
return output["images"][-1], output["images"], "\n".join(status_messages)
|
| 159 |
+
|
| 160 |
+
except Exception as e:
|
| 161 |
+
placeholder_image = create_placeholder_image()
|
| 162 |
+
return placeholder_image, [placeholder_image] * 3, f"Error: {str(e)}"
|
| 163 |
|
| 164 |
+
# Create Gradio interface
|
| 165 |
+
with gr.Blocks() as iface:
|
| 166 |
+
gr.Markdown(_HEADER_)
|
| 167 |
+
|
| 168 |
+
with gr.Row():
|
| 169 |
+
with gr.Column(scale=1):
|
| 170 |
+
sub_prompts = gr.Textbox(
|
| 171 |
+
lines=5,
|
| 172 |
+
label="Sub-prompts",
|
| 173 |
+
placeholder="Enter sub-prompts, one per line..."
|
| 174 |
)
|
| 175 |
+
|
| 176 |
+
lb_words = gr.Textbox(
|
| 177 |
+
lines=4,
|
| 178 |
+
label="Subject masking words",
|
| 179 |
+
placeholder="Enter subject words, one per line..."
|
|
|
|
|
|
|
| 180 |
)
|
| 181 |
+
|
| 182 |
+
n_self_replace = gr.Slider(
|
| 183 |
+
minimum=0.0,
|
| 184 |
+
maximum=1.0,
|
| 185 |
+
value=0.8,
|
| 186 |
+
step=0.1,
|
| 187 |
+
label="Percetange of self-attention map substitution steps"
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
lb_threshold = gr.Slider(
|
| 191 |
+
minimum=0.0,
|
| 192 |
+
maximum=1.0,
|
| 193 |
+
value=0.25,
|
| 194 |
+
step=0.05,
|
| 195 |
+
label="Threshold for latent mask extraction of subject words"
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
attention_res = gr.Number(
|
| 199 |
+
label="Attention map resolution",
|
| 200 |
+
value=32
|
| 201 |
+
)
|
| 202 |
+
|
| 203 |
with gr.Row():
|
| 204 |
+
use_nurse = gr.Checkbox(
|
| 205 |
+
label="Use attention nursing",
|
| 206 |
+
value=True
|
|
|
|
|
|
|
|
|
|
| 207 |
)
|
| 208 |
+
|
| 209 |
+
centroid_alignment = gr.Checkbox(
|
| 210 |
+
label="Use centroid alignment",
|
| 211 |
+
value=False
|
|
|
|
|
|
|
|
|
|
| 212 |
)
|
| 213 |
+
|
| 214 |
with gr.Row():
|
| 215 |
+
width = gr.Number(
|
| 216 |
+
label="Width",
|
| 217 |
+
value=1024
|
|
|
|
|
|
|
|
|
|
| 218 |
)
|
| 219 |
+
|
| 220 |
+
height = gr.Number(
|
| 221 |
+
label="Height",
|
| 222 |
+
value=1024
|
|
|
|
|
|
|
|
|
|
| 223 |
)
|
| 224 |
+
|
| 225 |
+
inference_steps = gr.Number(
|
| 226 |
+
label="Inference steps",
|
| 227 |
+
value=20
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
seed = gr.Number(
|
| 231 |
+
label="Seed (-1 for random)",
|
| 232 |
+
value=-1
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
generate_btn = gr.Button("Generate Image")
|
| 236 |
+
|
| 237 |
+
with gr.Column(scale=1):
|
| 238 |
+
output_image = gr.Image(label="Generated Image")
|
| 239 |
+
|
| 240 |
+
with gr.Accordion("Progressive Generation Process", open=False):
|
| 241 |
+
gallery = gr.Gallery(
|
| 242 |
+
label="Generation Steps",
|
| 243 |
+
show_label=True,
|
| 244 |
+
elem_id="gallery",
|
| 245 |
+
columns=2,
|
| 246 |
+
rows=3,
|
| 247 |
+
height="auto"
|
| 248 |
+
)
|
| 249 |
+
|
| 250 |
+
output_status = gr.Textbox(label="Status", lines=4)
|
| 251 |
+
|
| 252 |
+
# Connect the generate button to the process_image function
|
| 253 |
+
generate_btn.click(
|
| 254 |
+
fn=process_image,
|
| 255 |
inputs=[
|
| 256 |
+
sub_prompts,
|
| 257 |
+
lb_words,
|
| 258 |
+
n_self_replace,
|
| 259 |
+
lb_threshold,
|
| 260 |
+
attention_res,
|
| 261 |
+
use_nurse,
|
| 262 |
+
centroid_alignment,
|
| 263 |
width,
|
| 264 |
height,
|
| 265 |
+
inference_steps,
|
| 266 |
+
seed
|
| 267 |
+
],
|
| 268 |
+
outputs=[output_image, gallery, output_status]
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
# Examples
|
| 272 |
+
example_data = [
|
| 273 |
+
[
|
| 274 |
+
"a car and a bench\na blue car and a bench\na car and a green bench",
|
| 275 |
+
"car\nbench",
|
| 276 |
+
0.1,
|
| 277 |
+
20,
|
| 278 |
+
1
|
| 279 |
+
],
|
| 280 |
+
[
|
| 281 |
+
"In a cyberpunk style city night, a hound dog is standing in front of a sports car\nVan Gogh style hound dog\nLego-style sports car",
|
| 282 |
+
"dog\ncar",
|
| 283 |
+
0.25,
|
| 284 |
+
20,
|
| 285 |
+
2
|
| 286 |
],
|
| 287 |
+
[
|
| 288 |
+
"A sketch-style robot is leaning a oil-painting style tree\nA robot is leaning a tree\nA sketch-style robot is leaning a tree\nA robot is leaning a oil-painting style tree",
|
| 289 |
+
"\nrobot\ntree",
|
| 290 |
+
0.25,
|
| 291 |
+
20,
|
| 292 |
+
0
|
| 293 |
+
],
|
| 294 |
+
[
|
| 295 |
+
"a man wearing a red hat and blue tracksuit is standing in front of a green sports car\na man wearing a hat and tracksuit is standing in front of a sports car\na man wearing a red hat and tracksuit is standing in front of a sports car\na man wearing a hat and blue tracksuit is standing in front of a sports car\na man wearing a hat and tracksuit is standing in front of a green sports car",
|
| 296 |
+
"\nhat\ntracksuit\ncar",
|
| 297 |
+
0.25,
|
| 298 |
+
20,
|
| 299 |
+
6
|
| 300 |
+
],
|
| 301 |
+
|
| 302 |
+
]
|
| 303 |
+
|
| 304 |
+
gr.Examples(
|
| 305 |
+
examples=example_data,
|
| 306 |
+
inputs=[
|
| 307 |
+
sub_prompts,
|
| 308 |
+
lb_words,
|
| 309 |
+
lb_threshold,
|
| 310 |
+
inference_steps,
|
| 311 |
+
seed
|
| 312 |
+
]
|
| 313 |
)
|
| 314 |
|
| 315 |
if __name__ == "__main__":
|
| 316 |
+
iface.launch(share=True, server_port=7549)
|