Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,15 +1,16 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
from transformers import
|
| 4 |
from huggingface_hub import login
|
|
|
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
import numpy as np
|
| 7 |
-
import os
|
| 8 |
|
| 9 |
-
#
|
| 10 |
login(token=os.environ["HF_TOKEN"])
|
| 11 |
|
| 12 |
-
|
|
|
|
| 13 |
"meta-llama/Llama-2-13b-hf",
|
| 14 |
"meta-llama/Llama-2-7b-hf",
|
| 15 |
"meta-llama/Llama-2-70b-hf",
|
|
@@ -25,66 +26,112 @@ MODEL_LIST = [
|
|
| 25 |
"croissantllm/CroissantLLMBase"
|
| 26 |
]
|
| 27 |
|
| 28 |
-
#
|
| 29 |
-
|
|
|
|
| 30 |
|
| 31 |
-
# Charger le modèle
|
| 32 |
def load_model(model_name):
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
# Génération de texte et attention
|
| 40 |
-
def generate_text(model_name, input_text, temperature, top_p, top_k):
|
| 41 |
-
model, tokenizer = load_model(model_name)
|
| 42 |
-
inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
probabilities = torch.nn.functional.softmax(last_token_logits, dim=-1)
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
return "", "", "", ""
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
-
|
| 90 |
-
main()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
from huggingface_hub import login
|
| 5 |
+
import os
|
| 6 |
import matplotlib.pyplot as plt
|
| 7 |
import numpy as np
|
|
|
|
| 8 |
|
| 9 |
+
# Authentification
|
| 10 |
login(token=os.environ["HF_TOKEN"])
|
| 11 |
|
| 12 |
+
# Liste des modèles
|
| 13 |
+
models = [
|
| 14 |
"meta-llama/Llama-2-13b-hf",
|
| 15 |
"meta-llama/Llama-2-7b-hf",
|
| 16 |
"meta-llama/Llama-2-70b-hf",
|
|
|
|
| 26 |
"croissantllm/CroissantLLMBase"
|
| 27 |
]
|
| 28 |
|
| 29 |
+
# Variables globales
|
| 30 |
+
model = None
|
| 31 |
+
tokenizer = None
|
| 32 |
|
|
|
|
| 33 |
def load_model(model_name):
|
| 34 |
+
global model, tokenizer
|
| 35 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 36 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
|
| 37 |
+
if tokenizer.pad_token is None:
|
| 38 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 39 |
+
return f"Modèle {model_name} chargé avec succès."
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
+
def generate_text(input_text, temperature, top_p, top_k):
|
| 42 |
+
global model, tokenizer
|
| 43 |
|
| 44 |
+
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512).to(model.device)
|
| 45 |
+
|
| 46 |
+
with torch.no_grad():
|
| 47 |
+
outputs = model.generate(
|
| 48 |
+
**inputs,
|
| 49 |
+
max_new_tokens=50,
|
| 50 |
+
temperature=temperature,
|
| 51 |
+
top_p=top_p,
|
| 52 |
+
top_k=top_k,
|
| 53 |
+
output_attentions=True,
|
| 54 |
+
return_dict_in_generate=True
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
generated_text = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
|
| 58 |
+
|
| 59 |
+
# Obtenir les logits pour le dernier token généré
|
| 60 |
+
last_token_logits = outputs.scores[-1][0]
|
| 61 |
+
|
| 62 |
+
# Appliquer softmax pour obtenir les probabilités
|
| 63 |
probabilities = torch.nn.functional.softmax(last_token_logits, dim=-1)
|
| 64 |
+
|
| 65 |
+
# Obtenir les top 5 tokens les plus probables
|
| 66 |
+
top_k = 5
|
| 67 |
+
top_probs, top_indices = torch.topk(probabilities, top_k)
|
| 68 |
+
top_words = [tokenizer.decode([idx.item()]) for idx in top_indices]
|
| 69 |
+
|
| 70 |
+
# Préparer les données pour le graphique des probabilités
|
| 71 |
+
prob_data = {word: prob.item() for word, prob in zip(top_words, top_probs)}
|
| 72 |
+
|
| 73 |
+
# Extraire les attentions (moyenne sur toutes les couches et têtes d'attention)
|
| 74 |
+
attentions = torch.mean(torch.stack(outputs.attentions), dim=(0, 1)).cpu().numpy()
|
| 75 |
+
|
| 76 |
+
return generated_text, plot_attention(attentions, tokenizer.convert_ids_to_tokens(inputs["input_ids"][0])), plot_probabilities(prob_data)
|
| 77 |
+
|
| 78 |
+
def plot_attention(attention, tokens):
|
| 79 |
+
fig, ax = plt.subplots(figsize=(10, 10))
|
| 80 |
+
im = ax.imshow(attention, cmap='viridis')
|
| 81 |
+
ax.set_xticks(range(len(tokens)))
|
| 82 |
+
ax.set_yticks(range(len(tokens)))
|
| 83 |
+
ax.set_xticklabels(tokens, rotation=90)
|
| 84 |
+
ax.set_yticklabels(tokens)
|
| 85 |
+
plt.colorbar(im)
|
| 86 |
+
plt.title("Carte d'attention")
|
| 87 |
+
plt.tight_layout()
|
| 88 |
+
return fig
|
| 89 |
|
| 90 |
+
def plot_probabilities(prob_data):
|
| 91 |
+
words = list(prob_data.keys())
|
| 92 |
+
probs = list(prob_data.values())
|
| 93 |
+
|
| 94 |
+
fig, ax = plt.subplots(figsize=(10, 5))
|
| 95 |
+
ax.bar(words, probs)
|
| 96 |
+
ax.set_title("Probabilités des tokens suivants les plus probables")
|
| 97 |
+
ax.set_xlabel("Tokens")
|
| 98 |
+
ax.set_ylabel("Probabilité")
|
| 99 |
+
plt.xticks(rotation=45)
|
| 100 |
+
plt.tight_layout()
|
| 101 |
+
return fig
|
| 102 |
|
| 103 |
+
def reset():
|
| 104 |
+
return "", 1.0, 1.0, 50, None, None, None
|
|
|
|
| 105 |
|
| 106 |
+
with gr.Blocks() as demo:
|
| 107 |
+
gr.Markdown("# Générateur de texte avec visualisation d'attention")
|
| 108 |
+
|
| 109 |
+
with gr.Accordion("Sélection du modèle"):
|
| 110 |
+
model_dropdown = gr.Dropdown(choices=models, label="Choisissez un modèle")
|
| 111 |
+
load_button = gr.Button("Charger le modèle")
|
| 112 |
+
load_output = gr.Textbox(label="Statut du chargement")
|
| 113 |
+
|
| 114 |
+
with gr.Row():
|
| 115 |
+
temperature = gr.Slider(0.1, 2.0, value=1.0, label="Température")
|
| 116 |
+
top_p = gr.Slider(0.1, 1.0, value=1.0, label="Top-p")
|
| 117 |
+
top_k = gr.Slider(1, 100, value=50, step=1, label="Top-k")
|
| 118 |
+
|
| 119 |
+
input_text = gr.Textbox(label="Texte d'entrée")
|
| 120 |
+
generate_button = gr.Button("Générer")
|
| 121 |
+
|
| 122 |
+
output_text = gr.Textbox(label="Texte généré")
|
| 123 |
+
|
| 124 |
+
with gr.Row():
|
| 125 |
+
attention_plot = gr.Plot(label="Visualisation de l'attention")
|
| 126 |
+
prob_plot = gr.Plot(label="Probabilités des tokens suivants")
|
| 127 |
+
|
| 128 |
+
reset_button = gr.Button("Réinitialiser")
|
| 129 |
+
|
| 130 |
+
load_button.click(load_model, inputs=[model_dropdown], outputs=[load_output])
|
| 131 |
+
generate_button.click(generate_text,
|
| 132 |
+
inputs=[input_text, temperature, top_p, top_k],
|
| 133 |
+
outputs=[output_text, attention_plot, prob_plot])
|
| 134 |
+
reset_button.click(reset,
|
| 135 |
+
outputs=[input_text, temperature, top_p, top_k, output_text, attention_plot, prob_plot])
|
| 136 |
|
| 137 |
+
demo.launch()
|
|
|