Spaces:
Paused
Paused
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
+
import spaces
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
import numpy as np
|
| 7 |
+
|
| 8 |
+
# Liste des modèles
|
| 9 |
+
models = [
|
| 10 |
+
"meta-llama/Llama-2-13b", "meta-llama/Llama-2-7b", "meta-llama/Llama-2-70b",
|
| 11 |
+
"meta-llama/Meta-Llama-3-8B", "meta-llama/Llama-3.2-3B", "meta-llama/Llama-3.1-8B",
|
| 12 |
+
"mistralai/Mistral-7B-v0.1", "mistralai/Mixtral-8x7B-v0.1", "mistralai/Mistral-7B-v0.3",
|
| 13 |
+
"google/gemma-2-2b", "google/gemma-2-9b", "google/gemma-2-27b",
|
| 14 |
+
"croissantllm/CroissantLLMBase"
|
| 15 |
+
]
|
| 16 |
+
|
| 17 |
+
# Variables globales pour stocker le modèle et le tokenizer
|
| 18 |
+
model = None
|
| 19 |
+
tokenizer = None
|
| 20 |
+
|
| 21 |
+
def load_model(model_name):
|
| 22 |
+
global model, tokenizer
|
| 23 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 24 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 25 |
+
return f"Modèle {model_name} chargé avec succès."
|
| 26 |
+
|
| 27 |
+
@spaces.GPU(duration=300)
|
| 28 |
+
def generate_text(input_text, temperature, top_p, top_k):
|
| 29 |
+
global model, tokenizer
|
| 30 |
+
|
| 31 |
+
inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
|
| 32 |
+
|
| 33 |
+
with torch.no_grad():
|
| 34 |
+
outputs = model.generate(
|
| 35 |
+
**inputs,
|
| 36 |
+
max_new_tokens=50,
|
| 37 |
+
temperature=temperature,
|
| 38 |
+
top_p=top_p,
|
| 39 |
+
top_k=top_k,
|
| 40 |
+
output_attentions=True,
|
| 41 |
+
return_dict_in_generate=True
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
generated_text = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
|
| 45 |
+
|
| 46 |
+
# Extraire les attentions et les logits
|
| 47 |
+
attentions = outputs.attentions[-1][0][-1].cpu().numpy()
|
| 48 |
+
logits = outputs.scores[-1][0].cpu()
|
| 49 |
+
|
| 50 |
+
# Visualiser l'attention
|
| 51 |
+
plt.figure(figsize=(10, 10))
|
| 52 |
+
plt.imshow(attentions, cmap='viridis')
|
| 53 |
+
plt.title("Carte d'attention")
|
| 54 |
+
attention_plot = plt.gcf()
|
| 55 |
+
plt.close()
|
| 56 |
+
|
| 57 |
+
# Obtenir les mots les plus probables
|
| 58 |
+
probs = torch.nn.functional.softmax(logits, dim=-1)
|
| 59 |
+
top_probs, top_indices = torch.topk(probs, k=5)
|
| 60 |
+
top_words = [tokenizer.decode([idx]) for idx in top_indices]
|
| 61 |
+
|
| 62 |
+
return generated_text, attention_plot, top_words
|
| 63 |
+
|
| 64 |
+
def reset():
|
| 65 |
+
return "", 1.0, 1.0, 50, None, None, None
|
| 66 |
+
|
| 67 |
+
with gr.Blocks() as demo:
|
| 68 |
+
gr.Markdown("# Générateur de texte avec visualisation d'attention")
|
| 69 |
+
|
| 70 |
+
with gr.Accordion("Sélection du modèle"):
|
| 71 |
+
model_dropdown = gr.Dropdown(choices=models, label="Choisissez un modèle")
|
| 72 |
+
load_button = gr.Button("Charger le modèle")
|
| 73 |
+
load_output = gr.Textbox(label="Statut du chargement")
|
| 74 |
+
|
| 75 |
+
with gr.Row():
|
| 76 |
+
temperature = gr.Slider(0.1, 2.0, value=1.0, label="Température")
|
| 77 |
+
top_p = gr.Slider(0.1, 1.0, value=1.0, label="Top-p")
|
| 78 |
+
top_k = gr.Slider(1, 100, value=50, step=1, label="Top-k")
|
| 79 |
+
|
| 80 |
+
input_text = gr.Textbox(label="Texte d'entrée")
|
| 81 |
+
generate_button = gr.Button("Générer")
|
| 82 |
+
|
| 83 |
+
output_text = gr.Textbox(label="Texte généré")
|
| 84 |
+
|
| 85 |
+
with gr.Row():
|
| 86 |
+
attention_plot = gr.Plot(label="Visualisation de l'attention")
|
| 87 |
+
top_words = gr.JSON(label="Mots les plus probables")
|
| 88 |
+
|
| 89 |
+
reset_button = gr.Button("Réinitialiser")
|
| 90 |
+
|
| 91 |
+
load_button.click(load_model, inputs=[model_dropdown], outputs=[load_output])
|
| 92 |
+
generate_button.click(generate_text,
|
| 93 |
+
inputs=[input_text, temperature, top_p, top_k],
|
| 94 |
+
outputs=[output_text, attention_plot, top_words])
|
| 95 |
+
reset_button.click(reset,
|
| 96 |
+
outputs=[input_text, temperature, top_p, top_k, output_text, attention_plot, top_words])
|
| 97 |
+
|
| 98 |
+
demo.launch()
|