Update inference_fine_tune.py
Browse files- inference_fine_tune.py +9 -95
inference_fine_tune.py
CHANGED
|
@@ -7,6 +7,15 @@ from pathlib import Path
|
|
| 7 |
from config import get_config, get_weights_file_path
|
| 8 |
from train import get_model
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
config = get_config("./openweb.config.json")
|
| 12 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
@@ -22,101 +31,6 @@ model.eval()
|
|
| 22 |
state = torch.load(model_path,map_location=torch.device('cpu'))
|
| 23 |
model.load_state_dict(state['model_state_dict'])
|
| 24 |
|
| 25 |
-
def generate_text(
|
| 26 |
-
model, text, tokenizer, max_len, device,
|
| 27 |
-
temperature=0.7, top_k=50
|
| 28 |
-
):
|
| 29 |
-
eos_idx = tokenizer.token_to_id('</s>')
|
| 30 |
-
pad_idx = tokenizer.token_to_id('<pad>')
|
| 31 |
-
|
| 32 |
-
# Start with the input text as initial decoder input
|
| 33 |
-
decoder_input = text.to(device)
|
| 34 |
-
if decoder_input.dim() == 1:
|
| 35 |
-
decoder_input = decoder_input.unsqueeze(0)
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
# Print the initial prompt
|
| 39 |
-
|
| 40 |
-
while decoder_input.shape[1] < 2000 :
|
| 41 |
-
# Apply causal mask based on current decoder_input length
|
| 42 |
-
# decoder_mask = (decoder_input != pad_idx).unsqueeze(0).int() & causal_mask(decoder_input.size(1)).type_as(mask).to(device)
|
| 43 |
-
|
| 44 |
-
# Get model output
|
| 45 |
-
out = model.decode(decoder_input)
|
| 46 |
-
logits = model.project(out[:, -1]) # Get logits for last token
|
| 47 |
-
|
| 48 |
-
# Sampling: temperature + top-k
|
| 49 |
-
logits = logits / temperature
|
| 50 |
-
top_k_logits, top_k_indices = torch.topk(logits, top_k)
|
| 51 |
-
probs = torch.softmax(top_k_logits, dim=-1)
|
| 52 |
-
next_token = torch.multinomial(probs, num_samples=1)
|
| 53 |
-
next_token = top_k_indices.gather(-1, next_token)
|
| 54 |
-
|
| 55 |
-
# Decode and print token
|
| 56 |
-
word = tokenizer.decode([next_token.item()])
|
| 57 |
-
print(word, end="", flush=True)
|
| 58 |
-
|
| 59 |
-
# Append next token
|
| 60 |
-
|
| 61 |
-
decoder_input = torch.cat([decoder_input, next_token], dim=1)
|
| 62 |
-
if decoder_input.shape[1] > max_len:
|
| 63 |
-
decoder_input = decoder_input[:,-max_len:]
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
if next_token.item() == eos_idx:
|
| 67 |
-
break
|
| 68 |
-
|
| 69 |
-
print()
|
| 70 |
-
return decoder_input.squeeze(0)
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
def get_tokenizer(config)->Tokenizer:
|
| 75 |
-
tokenizers_path = Path(config['tokenizer_file'])
|
| 76 |
-
if Path.exists(tokenizers_path):
|
| 77 |
-
print("Loading tokenizer from ", tokenizers_path)
|
| 78 |
-
tokenizer = Tokenizer.from_file(str(tokenizers_path))
|
| 79 |
-
return tokenizer
|
| 80 |
-
else:
|
| 81 |
-
raise FileNotFoundError("Cant find tokenizer file : ",tokenizers_path)
|
| 82 |
-
|
| 83 |
-
def run_model(config):
|
| 84 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 85 |
-
print(f"Using device : {device}")
|
| 86 |
-
tokenizer = get_tokenizer(config)
|
| 87 |
-
model = get_model(config, tokenizer.get_vocab_size()).to(device)
|
| 88 |
-
model_path = get_weights_file_path(config,config['preload'])
|
| 89 |
-
model.eval()
|
| 90 |
-
|
| 91 |
-
if Path.exists(Path(model_path)):
|
| 92 |
-
print("Loading Model from : ", model_path)
|
| 93 |
-
state = torch.load(model_path)
|
| 94 |
-
model.load_state_dict(state['model_state_dict'])
|
| 95 |
-
print("You : ",end="")
|
| 96 |
-
input_text = input()
|
| 97 |
-
pad_token_id = tokenizer.token_to_id("<pad>")
|
| 98 |
-
user_token_id = tokenizer.token_to_id("<user>")
|
| 99 |
-
ai_token_id = tokenizer.token_to_id("<ai>")
|
| 100 |
-
while input_text != "exit":
|
| 101 |
-
input_tokens = tokenizer.encode(input_text).ids[:-1]
|
| 102 |
-
input_tokens.extend([user_token_id] + input_tokens + [ai_token_id] )
|
| 103 |
-
|
| 104 |
-
if len(input_tokens) > config['seq_len']:
|
| 105 |
-
print(f"exceeding max length of input : {config['seq_len']}")
|
| 106 |
-
continue
|
| 107 |
-
# if len(input_tokens) < config['seq_len']:
|
| 108 |
-
# input_tokens += [pad_token_id] * (config['seq_len'] - len(input_tokens))
|
| 109 |
-
input_tokens = torch.tensor(input_tokens)
|
| 110 |
-
output_tokens = generate_text(model, input_tokens, tokenizer, config['seq_len'], device )
|
| 111 |
-
print("MODEL : ",output_tokens)
|
| 112 |
-
output_text = tokenizer.decode(output_tokens.detach().cpu().numpy())
|
| 113 |
-
# print("Model : "+output_text)
|
| 114 |
-
print("You : ",end="")
|
| 115 |
-
input_text = input()
|
| 116 |
-
|
| 117 |
-
else:
|
| 118 |
-
raise FileNotFoundError("Model File not found : "+ model_path)
|
| 119 |
-
|
| 120 |
def generate_response(prompt:str):
|
| 121 |
print("Prompt : ",prompt)
|
| 122 |
|
|
|
|
| 7 |
from config import get_config, get_weights_file_path
|
| 8 |
from train import get_model
|
| 9 |
|
| 10 |
+
def get_tokenizer(config)->Tokenizer:
|
| 11 |
+
tokenizers_path = Path(config['tokenizer_file'])
|
| 12 |
+
if Path.exists(tokenizers_path):
|
| 13 |
+
print("Loading tokenizer from ", tokenizers_path)
|
| 14 |
+
tokenizer = Tokenizer.from_file(str(tokenizers_path))
|
| 15 |
+
return tokenizer
|
| 16 |
+
else:
|
| 17 |
+
raise FileNotFoundError("Cant find tokenizer file : ",tokenizers_path)
|
| 18 |
+
|
| 19 |
|
| 20 |
config = get_config("./openweb.config.json")
|
| 21 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 31 |
state = torch.load(model_path,map_location=torch.device('cpu'))
|
| 32 |
model.load_state_dict(state['model_state_dict'])
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
def generate_response(prompt:str):
|
| 35 |
print("Prompt : ",prompt)
|
| 36 |
|