Spaces:
Runtime error
Runtime error
add trainer
Browse files
README.md
CHANGED
|
File without changes
|
source/services/predicting_effective_arguments/train/model.py
CHANGED
|
@@ -5,6 +5,7 @@ import torch
|
|
| 5 |
import numpy as np
|
| 6 |
import torch.nn.functional as F
|
| 7 |
import matplotlib.pyplot as plt
|
|
|
|
| 8 |
from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix
|
| 9 |
|
| 10 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
@@ -22,35 +23,37 @@ class TransformersSequenceClassifier:
|
|
| 22 |
self.tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
| 23 |
self.model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint, num_labels=num_labels).to(device)
|
| 24 |
|
| 25 |
-
def
|
| 26 |
return self.tokenizer(batch["inputs"], truncation=True) #, max_len=386
|
| 27 |
|
| 28 |
-
def
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
val_tok_dataset = eval_dataset.map(self.tokenizer_func, batched=True, remove_columns=('inputs', '__index_level_0__'))
|
| 32 |
data_collator = DataCollatorWithPadding(tokenizer=self.tokenizer, padding='longest')
|
| 33 |
-
training_args = TrainingArguments(output_dir=
|
| 34 |
num_train_epochs=epochs,
|
| 35 |
learning_rate=2e-5,
|
| 36 |
per_device_train_batch_size=batch_size,
|
| 37 |
per_device_eval_batch_size=batch_size,
|
| 38 |
weight_decay=0.01,
|
| 39 |
evaluation_strategy="epoch",
|
|
|
|
| 40 |
disable_tqdm=False,
|
| 41 |
logging_steps=len(train_dataset)// batch_size,
|
| 42 |
push_to_hub=True,
|
|
|
|
| 43 |
log_level="error")
|
| 44 |
self.trainer = Trainer(
|
| 45 |
model=self.model,
|
| 46 |
args=training_args,
|
| 47 |
compute_metrics=self._compute_metrics,
|
| 48 |
-
train_dataset=
|
| 49 |
-
eval_dataset=
|
| 50 |
tokenizer=self.tokenizer,
|
| 51 |
data_collator=data_collator
|
| 52 |
)
|
| 53 |
self.trainer.train()
|
|
|
|
| 54 |
|
| 55 |
@staticmethod
|
| 56 |
def _compute_metrics(pred):
|
|
@@ -96,9 +99,9 @@ class TransformersSequenceClassifier:
|
|
| 96 |
return y_preds
|
| 97 |
|
| 98 |
@staticmethod
|
| 99 |
-
def predict_test_data(model_checkpoint,
|
| 100 |
pipe_classifier = pipeline("text-classification", model=model_checkpoint)
|
| 101 |
-
preds = pipe_classifier(
|
| 102 |
return preds
|
| 103 |
|
| 104 |
|
|
|
|
| 5 |
import numpy as np
|
| 6 |
import torch.nn.functional as F
|
| 7 |
import matplotlib.pyplot as plt
|
| 8 |
+
from typing import List
|
| 9 |
from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix
|
| 10 |
|
| 11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
| 23 |
self.tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
| 24 |
self.model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint, num_labels=num_labels).to(device)
|
| 25 |
|
| 26 |
+
def tokenizer_batch(self, batch):
|
| 27 |
return self.tokenizer(batch["inputs"], truncation=True) #, max_len=386
|
| 28 |
|
| 29 |
+
def tokenize_dataset(self, dataset):
|
| 30 |
+
return dataset.map(self.tokenizer_batch, batched=True, remove_columns=('inputs', '__index_level_0__'))
|
| 31 |
+
def train(self, train_dataset, eval_dataset, batch_size, epochs):
|
|
|
|
| 32 |
data_collator = DataCollatorWithPadding(tokenizer=self.tokenizer, padding='longest')
|
| 33 |
+
training_args = TrainingArguments(output_dir=self.model_output_dir,
|
| 34 |
num_train_epochs=epochs,
|
| 35 |
learning_rate=2e-5,
|
| 36 |
per_device_train_batch_size=batch_size,
|
| 37 |
per_device_eval_batch_size=batch_size,
|
| 38 |
weight_decay=0.01,
|
| 39 |
evaluation_strategy="epoch",
|
| 40 |
+
save_strategy='epoch',
|
| 41 |
disable_tqdm=False,
|
| 42 |
logging_steps=len(train_dataset)// batch_size,
|
| 43 |
push_to_hub=True,
|
| 44 |
+
load_best_model_at_end=True,
|
| 45 |
log_level="error")
|
| 46 |
self.trainer = Trainer(
|
| 47 |
model=self.model,
|
| 48 |
args=training_args,
|
| 49 |
compute_metrics=self._compute_metrics,
|
| 50 |
+
train_dataset=train_dataset,
|
| 51 |
+
eval_dataset=eval_dataset,
|
| 52 |
tokenizer=self.tokenizer,
|
| 53 |
data_collator=data_collator
|
| 54 |
)
|
| 55 |
self.trainer.train()
|
| 56 |
+
self.trainer.push_to_hub(commit_message="Training completed!")
|
| 57 |
|
| 58 |
@staticmethod
|
| 59 |
def _compute_metrics(pred):
|
|
|
|
| 99 |
return y_preds
|
| 100 |
|
| 101 |
@staticmethod
|
| 102 |
+
def predict_test_data(model_checkpoint, test_list: List[str]) -> List:
|
| 103 |
pipe_classifier = pipeline("text-classification", model=model_checkpoint)
|
| 104 |
+
preds = pipe_classifier(test_list, return_all_scores=True)
|
| 105 |
return preds
|
| 106 |
|
| 107 |
|
source/services/predicting_effective_arguments/train/seq_classification.py
CHANGED
|
@@ -7,15 +7,11 @@ from datasets import Dataset, load_metric
|
|
| 7 |
from sklearn.model_selection import train_test_split
|
| 8 |
from source.services.predicting_effective_arguments.train.model import TransformersSequenceClassifier
|
| 9 |
|
| 10 |
-
TARGET = 'discourse_effectiveness'
|
| 11 |
-
TEXT = "discourse_text"
|
| 12 |
-
MODEL_CHECKPOINT = "distilbert-base-uncased"
|
| 13 |
-
MODEL_OUTPUT_DIR ='source/services/predicting_effective_arguments/model/hf_textclassification'
|
| 14 |
class CFG:
|
| 15 |
TARGET = 'discourse_effectiveness'
|
| 16 |
TEXT = "discourse_text"
|
| 17 |
MODEL_CHECKPOINT = "distilbert-base-uncased"
|
| 18 |
-
MODEL_OUTPUT_DIR ='source/services/predicting_effective_arguments/model/hf_textclassification'
|
| 19 |
model_name="debertav3base"
|
| 20 |
learning_rate=1.5e-5
|
| 21 |
weight_decay=0.02
|
|
@@ -28,7 +24,6 @@ class CFG:
|
|
| 28 |
save_steps=100
|
| 29 |
max_length=512
|
| 30 |
|
| 31 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_CHECKPOINT)
|
| 32 |
|
| 33 |
def seed_everything(seed: int):
|
| 34 |
import random, os
|
|
@@ -52,17 +47,37 @@ def prepare_input_text(df, sep_token):
|
|
| 52 |
if __name__ == '__main__':
|
| 53 |
|
| 54 |
config = CFG()
|
|
|
|
| 55 |
seqClassifer = TransformersSequenceClassifier(model_output_dir=config.MODEL_OUTPUT_DIR, tokenizer=tokenizer, model_checkpoint="distilbert-base-uncased", num_labels=3) #distilbert-base-uncased
|
| 56 |
data = pd.read_csv("data/raw_data/train.csv")[:100]
|
| 57 |
test_df = pd.read_csv("data/raw_data/test.csv")
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
train_df = prepare_input_text(train_df, sep_token=tokenizer.sep_token)
|
| 61 |
valid_df = prepare_input_text(valid_df, sep_token=tokenizer.sep_token)
|
|
|
|
| 62 |
|
| 63 |
-
train_dataset = Dataset.from_pandas(train_df[['inputs', TARGET]]).rename_column(TARGET, 'label').class_encode_column("label")
|
| 64 |
-
val_dataset = Dataset.from_pandas(valid_df[['inputs', TARGET]]).rename_column(TARGET, 'label').class_encode_column("label")
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
"""
|
| 68 |
train_df[TARGET].value_counts(ascending=True).plot.barh()
|
|
|
|
| 7 |
from sklearn.model_selection import train_test_split
|
| 8 |
from source.services.predicting_effective_arguments.train.model import TransformersSequenceClassifier
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
class CFG:
|
| 11 |
TARGET = 'discourse_effectiveness'
|
| 12 |
TEXT = "discourse_text"
|
| 13 |
MODEL_CHECKPOINT = "distilbert-base-uncased"
|
| 14 |
+
MODEL_OUTPUT_DIR ='source/services/predicting_effective_arguments/model/hf_textclassification/predicting_effective_arguments_distilbert'
|
| 15 |
model_name="debertav3base"
|
| 16 |
learning_rate=1.5e-5
|
| 17 |
weight_decay=0.02
|
|
|
|
| 24 |
save_steps=100
|
| 25 |
max_length=512
|
| 26 |
|
|
|
|
| 27 |
|
| 28 |
def seed_everything(seed: int):
|
| 29 |
import random, os
|
|
|
|
| 47 |
if __name__ == '__main__':
|
| 48 |
|
| 49 |
config = CFG()
|
| 50 |
+
tokenizer = AutoTokenizer.from_pretrained(config.MODEL_CHECKPOINT)
|
| 51 |
seqClassifer = TransformersSequenceClassifier(model_output_dir=config.MODEL_OUTPUT_DIR, tokenizer=tokenizer, model_checkpoint="distilbert-base-uncased", num_labels=3) #distilbert-base-uncased
|
| 52 |
data = pd.read_csv("data/raw_data/train.csv")[:100]
|
| 53 |
test_df = pd.read_csv("data/raw_data/test.csv")
|
| 54 |
+
train_size = 0.7
|
| 55 |
+
valid_size = 0.2
|
| 56 |
+
test_size = 0.1
|
| 57 |
+
|
| 58 |
+
# First split: Separate out the training set
|
| 59 |
+
train_df, temp_df = train_test_split(data, test_size=1 - train_size)
|
| 60 |
+
|
| 61 |
+
# Second split: Separate out the validation and test sets
|
| 62 |
+
valid_df, test_df = train_test_split(temp_df, test_size=test_size / (test_size + valid_size))
|
| 63 |
+
|
| 64 |
|
| 65 |
train_df = prepare_input_text(train_df, sep_token=tokenizer.sep_token)
|
| 66 |
valid_df = prepare_input_text(valid_df, sep_token=tokenizer.sep_token)
|
| 67 |
+
test_df = prepare_input_text(test_df, sep_token=tokenizer.sep_token)
|
| 68 |
|
| 69 |
+
train_dataset = Dataset.from_pandas(train_df[['inputs', config.TARGET]]).rename_column(config.TARGET, 'label').class_encode_column("label")
|
| 70 |
+
val_dataset = Dataset.from_pandas(valid_df[['inputs', config.TARGET]]).rename_column(config.TARGET, 'label').class_encode_column("label")
|
| 71 |
+
test_dataset = Dataset.from_pandas(test_df[['inputs', config.TARGET]]).rename_column(config.TARGET, 'label').class_encode_column("label")
|
| 72 |
+
|
| 73 |
+
train_tok_dataset = seqClassifer.tokenize_dataset(dataset=train_dataset)
|
| 74 |
+
val_tok_dataset = seqClassifer.tokenize_dataset(dataset=val_dataset)
|
| 75 |
+
test_tok_dataset = seqClassifer.tokenize_dataset(dataset=test_dataset)
|
| 76 |
+
|
| 77 |
+
seqClassifer.train(train_dataset=train_tok_dataset, eval_dataset=val_tok_dataset, epochs=1, batch_size=16)
|
| 78 |
+
y_pred = seqClassifer.predict_valid_data(val_tok_dataset)
|
| 79 |
+
seqClassifer.predict_test_data(model_checkpoint=config.MODEL_OUTPUT_DIR, test_data=test_df['inputs'].tolist())
|
| 80 |
+
pass
|
| 81 |
|
| 82 |
"""
|
| 83 |
train_df[TARGET].value_counts(ascending=True).plot.barh()
|