Spaces:
Runtime error
Runtime error
File size: 14,838 Bytes
016e3e3 9593f18 016e3e3 9593f18 016e3e3 9593f18 016e3e3 9593f18 016e3e3 9593f18 016e3e3 9593f18 016e3e3 9593f18 016e3e3 9593f18 016e3e3 9593f18 016e3e3 9593f18 016e3e3 9593f18 016e3e3 9593f18 016e3e3 9593f18 016e3e3 9593f18 016e3e3 9593f18 016e3e3 9593f18 016e3e3 9593f18 016e3e3 9593f18 016e3e3 9593f18 016e3e3 9593f18 016e3e3 9593f18 016e3e3 9593f18 016e3e3 9593f18 016e3e3 9593f18 016e3e3 9593f18 016e3e3 9593f18 016e3e3 9593f18 016e3e3 9593f18 016e3e3 5df31f1 016e3e3 9593f18 016e3e3 ee7a82d 016e3e3 9593f18 016e3e3 9593f18 016e3e3 9593f18 016e3e3 9593f18 016e3e3 9593f18 016e3e3 5df31f1 016e3e3 9593f18 5df31f1 9593f18 5df31f1 016e3e3 9593f18 016e3e3 ee7a82d 7659820 ee7a82d 016e3e3 9593f18 016e3e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
#!/usr/bin/env python3
"""
AnySecret Chat Assistant - HuggingFace Spaces Gradio Interface
A specialized AI assistant for AnySecret configuration management
"""
import os
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import logging
import sys
from huggingface_hub import login
# Configure logging to show in HF Spaces
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(sys.stdout),
logging.StreamHandler(sys.stderr)
]
)
logger = logging.getLogger(__name__)
# Model configuration
BASE_MODEL = "meta-llama/Llama-3.2-3B-Instruct"
PEFT_MODEL = "anysecret-io/anysecret-assistant"
# Global variables for model and tokenizer
model = None
tokenizer = None
device = None
model_error = None
def load_model():
"""Load the model and tokenizer with improved error handling"""
global model, tokenizer, device, model_error
try:
logger.info("๐ Starting model loading process...")
# Check HuggingFace authentication
hf_token = os.environ.get('HF_TOKEN')
if hf_token:
logger.info("๐ HuggingFace token found, logging in...")
login(token=hf_token)
else:
logger.warning("โ ๏ธ No HF_TOKEN found in environment")
# Determine device and log system info
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"๐ฅ๏ธ Using device: {device}")
if torch.cuda.is_available():
gpu_name = torch.cuda.get_device_name(0)
total_memory = torch.cuda.get_device_properties(0).total_memory / (1024**3)
logger.info(f"๐ฎ GPU: {gpu_name} ({total_memory:.1f}GB)")
else:
logger.info("๐ป Running on CPU")
# Load tokenizer first
logger.info(f"๐ Loading tokenizer from {BASE_MODEL}...")
try:
tokenizer = AutoTokenizer.from_pretrained(
BASE_MODEL,
use_fast=True,
trust_remote_code=True
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"
logger.info("โ
Tokenizer loaded successfully")
except Exception as e:
logger.error(f"โ Failed to load tokenizer: {e}")
model_error = f"Tokenizer loading failed: {str(e)}"
return False
# Load base model with CPU optimizations
logger.info(f"๐ค Loading base model from {BASE_MODEL}...")
try:
base_model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
torch_dtype=torch.float32, # Use float32 for better CPU compatibility
device_map=None, # Don't use auto device mapping on CPU
trust_remote_code=True,
low_cpu_mem_usage=True,
use_cache=False # Disable KV cache to save memory
)
logger.info("โ
Base model loaded successfully")
except Exception as e:
logger.error(f"โ Failed to load base model: {e}")
model_error = f"Base model loading failed: {str(e)}"
return False
# Load LoRA adapter
logger.info(f"๐ Loading LoRA adapter from {PEFT_MODEL}...")
try:
model = PeftModel.from_pretrained(
base_model,
PEFT_MODEL,
torch_dtype=torch.float32
)
logger.info("โ
LoRA adapter loaded successfully")
except Exception as e:
logger.error(f"โ Failed to load LoRA adapter: {e}")
model_error = f"LoRA adapter loading failed: {str(e)}"
return False
# Move to device and set eval mode
try:
model = model.to(device)
model.eval()
logger.info("โ
Model moved to device and set to eval mode")
except Exception as e:
logger.error(f"โ Failed to move model to device: {e}")
model_error = f"Device placement failed: {str(e)}"
return False
logger.info("๐ Model loaded successfully!")
return True
except Exception as e:
logger.error(f"๐ฅ Critical error during model loading: {e}")
model_error = f"Critical loading error: {str(e)}"
import traceback
traceback.print_exc()
return False
def generate_response(message, history, max_new_tokens=256, temperature=0.1, top_p=0.9):
"""Generate response from the model"""
if model is None or tokenizer is None:
if model_error:
return f"โ Model loading failed: {model_error}"
return "โณ Model is still loading. Please try again in a moment."
try:
logger.info(f"๐ฌ Generating response for: {message[:50]}...")
# Format the conversation with proper prompt structure
conversation = ""
# Add conversation history (limit to prevent memory issues)
recent_history = history[-3:] if len(history) > 3 else history
for user_msg, assistant_msg in recent_history:
conversation += f"### Instruction:\n{user_msg}\n\n### Response:\n{assistant_msg}\n\n"
# Add current message
conversation += f"### Instruction:\n{message}\n\n### Response:\n"
# Tokenize with length limits
inputs = tokenizer(
conversation,
return_tensors="pt",
truncation=True,
max_length=512, # Reduced for memory efficiency
padding=True
).to(device)
# Generate with conservative settings
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True if temperature > 0 else False,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
repetition_penalty=1.1,
no_repeat_ngram_size=3
)
# Decode response
full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract just the new response
if "### Response:\n" in full_response:
response_parts = full_response.split("### Response:\n")
response = response_parts[-1].strip()
else:
# Fallback: get text after the input
input_text = tokenizer.decode(inputs['input_ids'][0], skip_special_tokens=True)
response = full_response[len(input_text):].strip()
# Clean up response
response = response.replace("### Instruction:", "").strip()
response = response.split("### Instruction:")[0].strip()
if not response:
response = "I apologize, but I couldn't generate a proper response. Could you rephrase your question?"
logger.info(f"โ
Generated response: {response[:50]}...")
return response
except Exception as e:
logger.error(f"๐ฅ Error generating response: {e}")
return f"Sorry, I encountered an error while generating a response: {str(e)}"
def chat_interface(message, history):
"""Main chat interface function for Gradio"""
response = generate_response(message, history, max_new_tokens=256)
return response
# Custom CSS for AnySecret branding
css = """
.gradio-container {
max-width: 1000px !important;
}
/* Increase chat window height */
.chatbot {
min-height: 500px !important;
max-height: 600px !important;
}
/* Style for GPU link */
.gpu-link {
background: linear-gradient(135deg, #10b981 0%, #059669 100%);
color: white;
padding: 12px 20px;
border-radius: 8px;
text-decoration: none;
font-weight: bold;
display: inline-block;
margin: 10px 5px;
transition: transform 0.2s;
}
.gpu-link:hover {
transform: translateY(-2px);
color: white;
}
.header {
text-align: center;
padding: 20px 0;
background: linear-gradient(135deg, #6366f1 0%, #818cf8 100%);
color: white;
margin-bottom: 20px;
border-radius: 10px;
}
.header h1 {
margin: 0;
font-size: 2.5em;
font-weight: bold;
}
.header p {
margin: 10px 0 0 0;
font-size: 1.1em;
opacity: 0.9;
}
.error-container {
background-color: #fee2e2;
border: 1px solid #fecaca;
border-radius: 8px;
padding: 16px;
margin: 16px 0;
color: #dc2626;
}
.loading-container {
background-color: #fef3c7;
border: 1px solid #fde68a;
border-radius: 8px;
padding: 16px;
margin: 16px 0;
color: #d97706;
}
.footer {
text-align: center;
padding: 20px 0;
color: #666;
font-size: 0.9em;
}
.footer-section {
margin: 15px 0;
}
.footer-section h4 {
margin: 10px 0 5px 0;
color: #333;
font-size: 0.95em;
font-weight: bold;
}
.model-links {
display: flex;
justify-content: center;
flex-wrap: wrap;
gap: 8px;
margin: 8px 0;
}
.model-link {
background-color: #f3f4f6;
color: #374151;
padding: 6px 12px;
border-radius: 6px;
text-decoration: none;
font-size: 0.8em;
transition: background-color 0.2s;
display: inline-flex;
align-items: center;
gap: 4px;
}
.model-link:hover {
background-color: #e5e7eb;
color: #374151;
}
.model-link.disabled {
opacity: 0.5;
cursor: not-allowed;
}
.hf-icon::before {
content: '๐ค';
}
.replicate-icon::before {
content: '๐';
}
"""
# Start model loading
logger.info("๐ Initializing AnySecret Chat Assistant...")
model_loaded = load_model()
# Create Gradio interface
with gr.Blocks(css=css, title="AnySecret Chat Assistant") as demo:
# Header
gr.HTML("""
<div class="header">
<h1>๐ AnySecret Chat Assistant</h1>
<p>Your AI assistant for configuration management across any cloud provider</p>
</div>
""")
if model_loaded:
# Main chat interface
chatbot = gr.ChatInterface(
fn=chat_interface,
title="",
description="Ask me anything about AnySecret configuration management, CLI commands, cloud integrations, or best practices!",
examples=[
"How do I configure AnySecret for AWS?",
"What's the difference between secrets and parameters?",
"Show me a GitHub Actions workflow example",
"How do I set up AnySecret with Kubernetes?",
"What are best practices for production secrets?",
"How do I migrate from AWS Parameter Store?"
],
retry_btn="๐ Retry",
undo_btn="โฉ๏ธ Undo",
clear_btn="๐๏ธ Clear Chat",
submit_btn="Send",
stop_btn="โน๏ธ Stop"
)
# Status info and GPU link
gr.HTML("""
<div style="text-align: center; padding: 10px; background-color: #dcfce7; border-radius: 8px; margin: 10px 0;">
<p style="color: #166534; margin: 0 0 10px 0;">
โ
Model loaded successfully! Running on CPU for optimal compatibility.
</p>
<a href="https://huggingface.co/anysecret-io/anysecret-assistant" target="_blank" class="gpu-link">
๐ Run the open AnySecret Assistant on your GPU
</a>
</div>
""")
else:
# Error state with details
error_html = f"""
<div class="error-container">
<h2>โ ๏ธ Model Loading Failed</h2>
<p><strong>Error:</strong> {model_error if model_error else 'Unknown error occurred'}</p>
<p>This is likely due to:</p>
<ul>
<li>Memory constraints on the free tier</li>
<li>Model access permissions</li>
<li>Temporary HuggingFace issues</li>
</ul>
<p><strong>Solutions:</strong></p>
<ul>
<li>Try refreshing the page in a few minutes</li>
<li>Check that both models exist and are accessible</li>
<li>Contact support if the issue persists</li>
</ul>
<p style="font-size: 0.9em; margin-top: 15px;">
<strong>Models:</strong><br>
Base: {BASE_MODEL}<br>
LoRA: {PEFT_MODEL}
</p>
</div>
"""
gr.HTML(error_html)
# Footer
gr.HTML("""
<div class="footer">
<div class="footer-section">
<p>
Powered by <strong>AnySecret.io</strong> โข
<a href="https://anysecret.io" target="_blank">Website</a> โข
<a href="https://docs.anysecret.io" target="_blank">Documentation</a> โข
<a href="https://github.com/anysecret-io/anysecret-lib" target="_blank">GitHub</a>
</p>
</div>
<div class="footer-section">
<h4>๐ค LLM Assistant</h4>
<div class="model-links">
<a href="https://huggingface.co/anysecret-io/anysecret-assistant" target="_blank" class="model-link">
<span class="hf-icon"></span> 3B Model
</a>
<a href="#" class="model-link disabled" title="Coming Soon">
<span class="hf-icon"></span> 7B Model
</a>
<a href="#" class="model-link disabled" title="Coming Soon">
<span class="hf-icon"></span> 13B Model
</a>
<a href="https://huggingface.co/spaces/anysecret-io/anysecret-chat" target="_blank" class="model-link">
<span class="hf-icon"></span> Chat
</a>
<a href="#" class="model-link disabled" title="Coming Soon">
<span class="replicate-icon"></span> Replicate
</a>
</div>
</div>
<div class="footer-section">
<p style="font-size: 0.8em; opacity: 0.7;">
This assistant is trained on AnySecret documentation and best practices.
For production support, please visit our official channels.
</p>
</div>
</div>
""")
# Launch configuration
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
debug=True, # Enable debug mode
show_error=True,
quiet=False
) |